1
|
Bora M, Yousuf RW, Dhar P, Manu M, Zafir I, Mishra B, Rajak KK, Singh RP. Characterization of defective interfering (DI) particles of Pestedes petitsruminants vaccine virus Sungri/96 strain-implications in vaccine upscaling. Biologicals 2019; 62:57-64. [PMID: 31588012 DOI: 10.1016/j.biologicals.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/03/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022] Open
Abstract
The present investigation deals with the characterization of defective interfering (DI) particles of Peste-des-petits ruminants (PPR) vaccine Sungri/96 strain generated as a result of high MOI in Vero cells. During the serial 10 passages, infectivity titres drastically reduced from 6.5 to 2.25 log10TCID50/ml at high MOI. Further, attenuation of CPE with high MOI indicated generation of DI particles that resulted in no/slow progression of CPE during the late passages. Monoclonal antibody based cell ELISA indicated normal protein (N & H) packaging in samples with DI activity. At genomic level, inconsistency in amplicon intensity of H gene was observed in RT-PCR, indicating a possible defect of H gene. Further analysis of copy number of PPRV by RT-qPCR indicated intermittent fluctuations of viral genomic RNA copies. The significant decline of viral RNA copies with MOI 3 (314 copies) compared to low MOI (512804 copies), proved that higher DI multiplicities cause more interference with the replication process of the standard virus. Therefore, MOI is critical for manufacturing of vaccines. These investigations will help in upscaling of PPR vaccines in view of ongoing National and Global PPR control and eradication programme.
Collapse
Affiliation(s)
- Mousumi Bora
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Raja Wasim Yousuf
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Pronab Dhar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - M Manu
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Insha Zafir
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Rabindra Prasad Singh
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, India.
| |
Collapse
|
2
|
Nag DK, Kramer LD. Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes. J Gen Virol 2017; 98:2731-2737. [PMID: 29039731 DOI: 10.1099/jgv.0.000945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus and has historically been reported to cause mild symptomatic diseases during human infections. More recently, the explosion of microcephaly among infants born to ZIKV-infected women has made ZIKV a global public health concern. While ZIKV causes acute human diseases, infections of vector mosquitoes are basically non-pathogenic, allowing persistent infections and conferring lifelong ability to transmit the virus. Recent studies have revealed that DNA forms of arboviral RNA genomes play a significant role in viral persistence in mosquitoes. We have initiated experiments to determine whether ZIKV generates viral DNA (vDNA) forms following infection in mosquitoes. Here we show that vDNAs are generated following ZIKV infection both in mosquito cell cultures and in its primary vector Aedes aegypti. vDNA formation is more extensive in RNA interference (RNAi)-deficient Aedes albopictus-derived C6/36 cells compared to RNAi-proficient mosquito cells. In addition, vDNAs are generated via multiple template-switching events.
Collapse
Affiliation(s)
- Dilip K Nag
- Department of Biomedical Sciences, State University of New York, Albany, NY 12201, USA.,Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Laura D Kramer
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA.,Department of Biomedical Sciences, State University of New York, Albany, NY 12201, USA
| |
Collapse
|
3
|
Hong Y, Schmidt K, Marks D, Hatter S, Marshall A, Albino L, Ebner P. Treatment of Salmonella-Contaminated Eggs and Pork with a Broad-Spectrum, Single Bacteriophage: Assessment of Efficacy and Resistance Development. Foodborne Pathog Dis 2016; 13:679-688. [PMID: 27768383 DOI: 10.1089/fpd.2016.2172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yingying Hong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Kyle Schmidt
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Danielle Marks
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Samantha Hatter
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Anne Marshall
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Albino
- Department of Food Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paul Ebner
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
4
|
Nag DK, Brecher M, Kramer LD. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology 2016; 498:164-171. [PMID: 27588377 DOI: 10.1016/j.virol.2016.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Although infections of vertebrate hosts by arthropod-borne viruses may lead to pathogenic outcomes, infections of vector mosquitoes result in persistent infections, where the virus replicates in the host without causing apparent pathological effects. It is unclear how persistent infections are established and maintained in mosquitoes. Several reports revealed the presence of flavivirus-like DNA sequences in the mosquito genome, and recent studies have shown that DNA forms of RNA viruses restrict virus replication in Drosophila, suggesting that DNA forms may have a role in developing persistent infections. Here, we sought to investigate whether arboviruses generate DNA forms following infection in mosquitoes. Our results with West Nile, Dengue, and La Crosse viruses demonstrate that DNA forms of the viral RNA genome are generated in mosquito cells; however, not the entire viral genome, but patches of viral RNA in DNA forms can be detected 24h post infection.
Collapse
Affiliation(s)
- Dilip K Nag
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| | - Matthew Brecher
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | - Laura D Kramer
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| |
Collapse
|
5
|
Zhang Y, Charvat RA, Kim SK, O'Callaghan DJ. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors. Virology 2014; 449:25-34. [PMID: 24418534 DOI: 10.1016/j.virol.2013.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/18/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Robert A Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Seong K Kim
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J O'Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
6
|
RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 2013; 14:396-403. [DOI: 10.1038/ni.2542] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
|
7
|
Charvat RA, Zhang Y, O'Callaghan DJ. Deletion of the UL4 gene sequence of equine herpesvirus 1 precludes the generation of defective interfering particles. Virus Genes 2012; 45:295-303. [PMID: 22752566 DOI: 10.1007/s11262-012-0781-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
Serial, high multiplicity passage of equine herpesvirus 1 (EHV-1) leads to the generation of defective interfering particles (DIP). EHV-1 DIP inhibit and interfere with the replication of standard EHV-1, establishing a state of persistent infection. These DIP package severely truncated and rearranged forms of the standard viral genome. Contained within the DIP genome are only three genes: UL3, UL4, and a unique hybrid gene (Hyb). The hybrid gene forms through a recombination event that fuses portions of the early regulatory IR4 and UL5 genes and is essential for DIP-mediated interference. The UL4 gene is an early gene dispensable for lytic replication and inhibits viral and cellular gene expression. However, the contribution of the UL4 gene during DIP-mediated persistent infection is unknown. Here, we describe the generation of a completely deleted UL4 virus and its use to investigate the role of the UL4 gene in the generation of the defective genome. Deletion of the UL4 gene resulted in delayed virus growth at late times post-infection. Cells infected with a mutant EHV-1 that lacked expression of the UL4 protein due to an inserted stop codon in the UL4 gene produced defective particles, while cells infected with a mutant EHV-1 that had the complete UL4 gene sequence deleted were unable to produce DIP. These data suggest that the UL4 gene sequence, but not the UL4 protein, is critical for the generation of defective interfering particles.
Collapse
Affiliation(s)
- Robert A Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
8
|
Ahn BC, Kim S, Zhang Y, Charvat RA, O'Callaghan DJ. The early UL3 gene of equine herpesvirus-1 encodes a tegument protein not essential for replication or virulence in the mouse. Virology 2011; 420:20-31. [PMID: 21917286 DOI: 10.1016/j.virol.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/25/2011] [Accepted: 08/23/2011] [Indexed: 12/01/2022]
Abstract
The UL3 gene of equine herpesvirus-1 (EHV-1) is retained in the genome of defective interfering particles and encodes a ~33kDa myristylated protein. Further characterization showed that the UL3 gene is trans-activated only by the sole immediate early (IE) protein and encodes an early protein that is dispensable for EHV-1 replication and localizes in the tegument of purified virions. UL3-deleted EHV-1 (vL11ΔUL3) exhibits properties of host cell tropism, plaque size, and growth kinetics similar to those of the parental virus. Expression levels of EHV-1 proteins representative of all three gene classes in vL11ΔUL3-infected cells were identical to those in cells infected with parental virus. Mice intranasally infected with vL11ΔUL3 and parental virus showed no significant difference in mortality or virus lung titers. These findings suggest that the UL3 protein does not play a major role in the biology of EHV-1 in cell culture or virulence in the mouse.
Collapse
Affiliation(s)
- Byung Chul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
9
|
Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J. Defective interfering viral particles in acute dengue infections. PLoS One 2011; 6:e19447. [PMID: 21559384 PMCID: PMC3084866 DOI: 10.1371/journal.pone.0019447] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/29/2011] [Indexed: 01/18/2023] Open
Abstract
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - William B. Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kym Lowry
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anita Jones
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hlaing Myat Thu
- Virology Research Division, Department of Medical Research, Yangon, Myanmar
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
10
|
Charvat RA, Breitenbach JE, Ahn B, Zhang Y, O’Callaghan DJ. The UL4 protein of equine herpesvirus 1 is not essential for replication or pathogenesis and inhibits gene expression controlled by viral and heterologous promoters. Virology 2011; 412:366-77. [PMID: 21324502 PMCID: PMC3060994 DOI: 10.1016/j.virol.2011.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/23/2010] [Accepted: 01/19/2011] [Indexed: 11/26/2022]
Abstract
Defective interfering particles (DIP) of equine herpesvirus 1 (EHV-1) inhibit standard virus replication and mediate persistent infection. The DIP genome is comprised of only three genes: UL3, UL4, and a hybrid gene composed of portions of the IR4 (EICP22) and UL5 (EICP27) genes. The hybrid gene is important for DIP interference, but the function(s) of the UL3 and UL4 genes are unknown. Here, we show that UL4 is an early gene activated solely by the immediate early protein. The UL4 protein (UL4P) was detected at 4hours post-infection, was localized throughout the nucleus and cytoplasm, and was not present in purified virions. EHV-1 lacking UL4P expression was infectious and displayed cell tropism and pathogenic properties in the mouse model similar to those of parental and revertant viruses. Reporter assays demonstrated that the UL4P has a broad inhibitory function, suggesting a potential role in establishing and/or maintaining DIP-mediated persistent infection.
Collapse
Affiliation(s)
- Robert A. Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | - ByungChul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yunfei Zhang
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J. O’Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
11
|
Ahn B, Zhang Y, Osterrieder N, O'Callaghan DJ. Properties of an equine herpesvirus 1 mutant devoid of the internal inverted repeat sequence of the genomic short region. Virology 2010; 410:327-35. [PMID: 21176938 DOI: 10.1016/j.virol.2010.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/03/2010] [Accepted: 11/20/2010] [Indexed: 01/08/2023]
Abstract
The 150 kbp genome of equine herpesvirus-1 (EHV-1) is composed of a unique long (UL) region and a unique short (Us) segment, which is flanked by identical internal and terminal repeat (IR and TR) sequences of 12.7 kbp. We constructed an EHV-1 lacking the entire IR (vL11ΔIR) and showed that the IR is dispensable for EHV-1 replication but that the vL11ΔIR exhibits a smaller plaque size and delayed growth kinetics. Western blot analyses of cells infected with vL11ΔIR showed that the synthesis of viral proteins encoded by the immediate-early, early, and late genes was reduced at immediate-early and early times, but by late stages of replication reached wild type levels. Intranasal infection of CBA mice revealed that the vL11ΔIR was significantly attenuated as mice infected with the vL11ΔIR showed a reduced lung viral titer and greater ability to survive infection compared to mice infected with parental or revertant virus.
Collapse
Affiliation(s)
- ByungChul Ahn
- Center for Molecular and Tumor Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
12
|
Breitenbach JE, Ebner PD, O'Callaghan DJ. The IR4 auxiliary regulatory protein expands the in vitro host range of equine herpesvirus 1 and is essential for pathogenesis in the murine model. Virology 2009; 383:188-94. [PMID: 19012943 DOI: 10.1016/j.virol.2008.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 09/18/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
IR4, an early regulatory protein of equine herpesvirus 1 (EHV-1), is not a DNA-binding protein, but interacts with the sole immediate-early protein (IEP) to increase both IEP site-specific DNA-binding and IEP-mediated trans-activation of EHV-1 promoters. To investigate the biological properties of IR4 and ascertain whether this regulatory protein is essential for virus growth, bacterial artificial chromosome methods were employed to generate an IR4-null EHV-1. The IR4 gene was dispensable for EHV-1 growth in non-immortalized equine NBL-6 cells, but virus replication was delayed and was reduced by greater than 10-fold. In addition, replication of the IR4 mutant was abrogated in all other cell types tested, including equine ETCC tumor cells and cells of mouse, rabbit, monkey, and human origin. Further, in contrast to the highly pathogenic parent virus, the IR4 deletion mutant failed to cause disease in the CBA mouse as judged by assessing body weight and clinical signs and was unable to replicate in the murine lung. To define the nature of the block in the replication of the IR4-null virus, molecular analyses were carried out in RK-13 rabbits' cells infected with the IR4-deleted virus and revealed that: 1) the synthesis of the sole IEP was not inhibited; 2) the synthesis of early viral proteins examined was either not affected or was delayed to late times; 3) viral DNA replication was inhibited by more than 99.9%; and 4) synthesis of essential late proteins such as glycoprotein D and glycoprotein K was prevented. These findings indicate that the IR4 protein is required for EHV-1 DNA replication in non-permissive cells, and, like its homologues in other alphaherpesviruses, contributes a function required for virus replication in a variety of cell types.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|