1
|
Denner J. Vaccination against the Koala Retrovirus (KoRV): Problems and Strategies. Animals (Basel) 2021; 11:ani11123555. [PMID: 34944329 PMCID: PMC8697897 DOI: 10.3390/ani11123555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The koala retrovirus (KoRV) is spreading in the koala population from the north to the south of Australia and is also in the process of endogenization into the koala genome. Virus infection is associated with tumorigenesis and immunodeficiency and is contributing to the decline of the animal population. Antibody production is an excellent marker of retrovirus infection; however, animals carrying endogenous KoRV are tolerant. Therefore, the therapeutic immunization of animals carrying endogenous KoRV seems to be ineffective. Using the recombinant transmembrane (TM) envelope protein of the KoRV, we immunized goats, rats and mice, obtaining in all cases neutralizing antibodies which recognize epitopes in the fusion peptide proximal region (FPPR), and in the membrane-proximal external region (MPER). Immunizing several animal species with the corresponding TM envelope protein of the closely related porcine endogenous retrovirus (PERV), as well as the feline leukemia virus (FeLV), we also induced neutralizing antibodies with similar epitopes. Immunizing with the TM envelope protein in addition to the surface envelope proteins of all three viruses resulted in higher titers of neutralizing antibodies. Immunizing KoRV-negative koalas with our vaccine (which is composed of both envelope proteins) may protect these animals from infection, and these may be the starting points of a virus-free population.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Robert von Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
2
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
3
|
Chen W, Guo J, Cai Y, Fu Q, Chen B, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle-Supported Liposomes. Angew Chem Int Ed Engl 2019; 58:9866-9870. [PMID: 30990942 PMCID: PMC6660371 DOI: 10.1002/anie.201903093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Presentation of membrane proteins to host immune systems has been a challenging problem owing to complexity arising from the poor in vivo stability of the membrane-mimetic media often used for solubilizing the membrane proteins. The use of functionalized, biocompatible nanoparticles as substrates is shown to guide the formation of proteoliposomes, which can present many copies of membrane proteins in a unidirectional manner. The approach was demonstrated to present the membrane-proximal region of the HIV-1 envelope glycoprotein. These nanoparticle-supported liposomes are broadly applicable as membrane antigen vehicles for inducing host immune responses.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Junling Guo
- Department of Biomass Science and Engineering, Sichuan University, 252 Shuncheng Street, Chengdu, Sichuan 610065, China
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
4
|
Chen W, Cai Y, Fu Q, Chen B, Guo J, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle‐Supported Liposomes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Yongfei Cai
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Bing Chen
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Junling Guo
- Department of Biomass Science and EngineeringSichuan University 24 South Section Yihuan Road Chengdu Sichuan 610065 China
| | - James J. Chou
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| |
Collapse
|
5
|
Vavra KC, Xia Y, Rock RS. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection. Biophys J 2017; 110:2517-2527. [PMID: 27276269 DOI: 10.1016/j.bpj.2016.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability.
Collapse
Affiliation(s)
- Kevin C Vavra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Sun M, Li Y, Zheng H, Shao Y. Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies. Front Immunol 2016; 7:391. [PMID: 27746780 PMCID: PMC5043134 DOI: 10.3389/fimmu.2016.00391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/15/2016] [Indexed: 11/13/2022] Open
Abstract
The recent discoveries of broadly potent neutralizing human monoclonal antibodies represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody-engineering technologies have been explored to generate "the better" neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs) as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here, we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region-specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector, and human hematopoietic stem/progenitor cells transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences , Kunming , China
| | - Yue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Huiwen Zheng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences , Kunming , China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, China; School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Habte HH, Banerjee S, Shi H, Qin Y, Cho MW. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology 2015; 486:187-97. [PMID: 26454663 DOI: 10.1016/j.virol.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 01/15/2023]
Abstract
The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive target for vaccine development. Thus, better understanding of its immunogenic properties in various structural contexts is important. We previously described the crystal structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the heptad repeat regions 1 and 2 and the MPER. The protein was efficiently recognized by broadly neutralizing antibodies. Here, we describe its immunogenic properties in rabbits. The protein was highly immunogenic, especially the C-terminal end of the MPER containing 4E10 and 10E8 epitopes ((671)NWFDITNWLWYIK(683)). Although antibodies exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was not detected. Detailed mapping analyses indicated that amino acid residues critical for recognition resided on faces of the alpha helix that are either opposite of or perpendicular to the epitopes recognized by 4E10 and 10E8. These results provide critical information for designing the next generation of MPER-based immunogens.
Collapse
Affiliation(s)
- Habtom H Habte
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Saikat Banerjee
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Heliang Shi
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Yali Qin
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Michael W Cho
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA.
| |
Collapse
|
8
|
Zang Y, Du D, Li N, Su W, Liu X, Zhang Y, Nie J, Wang Y, Kong W, Jiang C. Eliciting neutralizing antibodies against the membrane proximal external region of HIV-1 Env by chimeric live attenuated influenza A virus vaccines. Vaccine 2015; 33:3859-64. [PMID: 26126669 DOI: 10.1016/j.vaccine.2015.06.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
9
|
Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein. PLoS One 2015; 10:e0128562. [PMID: 26087072 PMCID: PMC4472232 DOI: 10.1371/journal.pone.0128562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.
Collapse
|
10
|
Cappelletti F, Clementi N, Mancini N, Clementi M, Burioni R. Virus-induced preferential antibody gene-usage and its importance in humoral autoimmunity. Semin Immunol 2015; 27:138-43. [PMID: 25857210 DOI: 10.1016/j.smim.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
It is known that even the adaptive components of the immune system are based on genetic traits common to all individuals, and that diversity is shaped by the lifelong contacts with different non-self antigens, including those found on infectious pathogens. Besides the individual differences, some of these common traits may be more prone to react against a given antigen, and this may be exploited by the infectious pathogens. Indeed, viral infections can deregulate immune response by subverting antibody (Ab) gene usage, leading to the overexpression of specific Ab subfamilies. This overexpression often results in a protective antiviral response but, in some cases, also correlates with a higher likelihood of developing humoral autoimmune disorders. These aspects of virus-induced autoimmunity have never been thoroughly reviewed, and this is the main purpose of this review. An accurate examination of virus specific Ab subfamilies elicited during infections may help further characterize the complex interplay between viruses and the humoral immune response, and be useful in the design of future monoclonal antibody (mAb)-based anti-infective prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Cappelletti
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy.
| |
Collapse
|
11
|
Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, Kim M, Reinherz EL, Irvine DJ. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 2015; 33:861-8. [PMID: 25559188 DOI: 10.1016/j.vaccine.2014.12.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
An HIV vaccine capable of inducing high and durable levels of broadly neutralizing antibodies has thus far proven elusive. A promising antigen is the membrane-proximal external region (MPER) from gp41, a segment of the viral envelope recognized by a number of broadly neutralizing antibodies. Though an attractive vaccine target due to the linear nature of the epitope and its highly conserved sequence, MPER peptides are poorly immunogenic and may require display on membranes to achieve a physiological conformation matching the native virus. Here we systematically explored how the structure and composition of liposomes displaying MPER peptides impacts the strength and durability of humoral responses to this antigen as well as helper T-cell responses in mice. Administration of MPER peptides anchored to the surface of liposomes induced MPER-specific antibodies whereas MPER administered in oil-based emulsion adjuvants or alum did not, even when combined with Toll-like receptor agonists. High-titer IgG responses to liposomal MPER required the inclusion of molecular adjuvants such as monophosphoryl lipid A. Anti-MPER humoral responses were further enhanced by incorporating high-Tm lipids in the vesicle bilayer and optimizing the MPER density to a mean distance of ∼10-15 nm between peptides on the liposomes' surfaces. Encapsulation of helper epitopes within the vesicles allowed efficient "intrastructural" T-cell help, which promoted IgG responses to MPER while minimizing competing B-cell responses against the helper sequence. These results define several key properties of liposome formulations that promote durable, high-titer antibody responses against MPER peptides, which will be a prerequisite for a successful MPER-targeting vaccine.
Collapse
Affiliation(s)
- Melissa C Hanson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica P Crespo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie H Chen
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haipeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Greg Lee Szeto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mikyung Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
12
|
Lai RPJ, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J Biol Chem 2014; 289:29912-26. [PMID: 25160627 PMCID: PMC4208001 DOI: 10.1074/jbc.m114.569566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Collapse
Affiliation(s)
- Rachel P J Lai
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Miriam Hock
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Jens Radzimanowski
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Paul Tonks
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - David Lutje Hulsik
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Gregory Effantin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - David J Seilly
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Hanna Dreja
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts 02139
| | - Nancy Tumba
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Jonathan L Heeney
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom,
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France,
| |
Collapse
|
13
|
Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21:79. [PMID: 25160824 PMCID: PMC4256929 DOI: 10.1186/s12929-014-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes. Results The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera. Conclusions Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
14
|
Mohan T, Verma P, Rao D. Comparative mucosal immunogenicity of HIV gp41 membrane-proximal external region (MPER) containing single and multiple repeats of ELDKWA sequence with defensin peptides. Immunobiology 2014; 219:292-301. [DOI: 10.1016/j.imbio.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 11/29/2022]
|
15
|
Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer. Proc Natl Acad Sci U S A 2014; 111:1391-6. [PMID: 24474763 DOI: 10.1073/pnas.1309842111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.
Collapse
|
16
|
The crystal structure of HIV CRF07 B'/C gp41 reveals a hyper-mutant site in the middle of HR2 heptad repeat. Virology 2013; 446:86-94. [PMID: 24074570 DOI: 10.1016/j.virol.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
HIV CRF07 B'/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is important in HIV mediated cell-cell fusion and plays critical roles in conformational changes during viral invasion.
Collapse
|
17
|
Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J Virol 2013; 87:9873-85. [PMID: 23824824 DOI: 10.1128/jvi.01226-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.
Collapse
|
18
|
Lutje Hulsik D, Liu YY, Strokappe NM, Battella S, El Khattabi M, McCoy LE, Sabin C, Hinz A, Hock M, Macheboeuf P, Bonvin AMJJ, Langedijk JPM, Davis D, Forsman Quigley A, Aasa-Chapman MMI, Seaman MS, Ramos A, Poignard P, Favier A, Simorre JP, Weiss RA, Verrips CT, Weissenhorn W, Rutten L. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog 2013; 9:e1003202. [PMID: 23505368 PMCID: PMC3591319 DOI: 10.1371/journal.ppat.1003202] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
Collapse
Affiliation(s)
- David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Ying-ying Liu
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nika M. Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Simone Battella
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohamed El Khattabi
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laura E. McCoy
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Miriam Hock
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Pauline Macheboeuf
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - David Davis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Anna Forsman Quigley
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Marlén M. I. Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pascal Poignard
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Adrien Favier
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Jean-Pierre Simorre
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Robin A. Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - C. Theo Verrips
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- QVQ BV, Utrecht, The Netherlands
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
- * E-mail: (WW); (LR)
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail: (WW); (LR)
| |
Collapse
|
19
|
Denner J. Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1: a comparative study. Hum Vaccin Immunother 2012; 9:462-70. [PMID: 23249763 DOI: 10.4161/hv.23221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The induction of neutralizing antibodies is a promising way to prevent retrovirus infections. Neutralizing antibodies are mainly directed against the envelope proteins, which consist of two molecules, the surface envelope (SU) protein and the transmembrane envelope (TM) protein. Antibodies broadly neutralizing the human immunodeficiencvy virus-1 (HIV-1) and binding to the TM protein gp41 of the virus have been isolated from infected individuals. Their epitopes are located in the membrane proximal external region (MPER). Since there are difficulties to induce such neutralizing antibodies as basis for an effective AIDS vaccine, we performed a comparative analysis immunising with the TM proteins of different viruses from the family Retroviridae. Both subfamilies, the Orthoretrovirinae and the Spumaretrovirinae were included. In this study, the TM proteins of three gammaretroviruses including (1) the porcine endogenous retrovirus (PERV), (2) the Koala retrovirus (KoRV), (3) the feline leukemia virus (FeLV), of two lentiviruses, HIV-1, HIV-2, and of two spumaviruses, the feline foamy virus (FFV) and the primate foamy virus (PFV) were used for immunisation. Whereas in all immunisation studies binding antibodies were induced, neutralizing antibodies were only found in the case of the gammaretroviruses. The induced antibodies were directed against the MPER and the fusion peptide proximal region (FPPR) of their TM proteins; however only the antibodies against the MPER were neutralizing. Most importantly, the epitopes in the MPER were localized in the same position as the epitopes of the antibodies broadly neutralizing HIV-1 in the TM protein gp41 of HIV-1, indicating that the MPER is an effective target for the neutralization of retroviruses.
Collapse
|
20
|
Wahome N, Pfeiffer T, Ambiel I, Yang Y, Keppler OT, Bosch V, Burkhard P. Conformation-specific Display of 4E10 and 2F5 Epitopes on Self-assembling Protein Nanoparticles as a Potential HIV Vaccine. Chem Biol Drug Des 2012; 80:349-57. [DOI: 10.1111/j.1747-0285.2012.01423.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Lu CH, Zhang Y, Tang SF, Fang ZB, Yang HH, Chen X, Chen GN. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 2012; 31:439-44. [DOI: 10.1016/j.bios.2011.11.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/04/2011] [Indexed: 12/28/2022]
|
22
|
Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, Stewart S, Bowman C, Xia SM, Zhang R, Shen X, Scearce RM, Ofek G, Yang Y, Kwong PD, Santra S, Liao HX, Tomaras G, Letvin NL, Chen B, Alam SM, Haynes BF. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. PLoS One 2011; 6:e27824. [PMID: 22140469 PMCID: PMC3227606 DOI: 10.1371/journal.pone.0027824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022] Open
Abstract
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope ⁶⁶⁴DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.
Collapse
Affiliation(s)
- S. Moses Dennison
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Laura L. Sutherland
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Frederick H. Jaeger
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kara M. Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Parks
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shelley Stewart
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cindy Bowman
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shi-Mao Xia
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruijun Zhang
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Richard M. Scearce
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sampa Santra
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia Tomaras
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - S. Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| | - Barton F. Haynes
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| |
Collapse
|
23
|
Ye L, Wen Z, Dong K, Wang X, Bu Z, Zhang H, Compans RW, Yang C. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. PLoS One 2011; 6:e14813. [PMID: 21625584 PMCID: PMC3098228 DOI: 10.1371/journal.pone.0014813] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/12/2011] [Indexed: 02/06/2023] Open
Abstract
Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.
Collapse
Affiliation(s)
- Ling Ye
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (LY); (CY)
| | - Zhiyuan Wen
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Agriculture Ministry Key Laboratory of Veterinary Public Health, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Ke Dong
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Central Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xi Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Central Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhigao Bu
- Agriculture Ministry Key Laboratory of Veterinary Public Health, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Huizhong Zhang
- Central Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (LY); (CY)
| |
Collapse
|
24
|
Jain S, Patrick AJ, Rosenthal KL. Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine 2010; 28:7070-80. [DOI: 10.1016/j.vaccine.2010.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
25
|
Antigenic characteristics of rhinovirus chimeras designed in silico for enhanced presentation of HIV-1 gp41 epitopes [corrected]. J Mol Biol 2010; 397:752-66. [PMID: 20138057 DOI: 10.1016/j.jmb.2010.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/21/2022]
Abstract
The development of an effective AIDS vaccine remains the most promising long-term strategy to combat human immunodeficiency virus (HIV)/AIDS. Here, we report favorable antigenic characteristics of vaccine candidates isolated from a combinatorial library of human rhinoviruses displaying the ELDKWA epitope of the gp41 glycoprotein of HIV-1. The design principles of this library emerged from the application of molecular modeling calculations in conjunction with our knowledge of previously obtained ELDKWA-displaying chimeras, including knowledge of a chimera with one of the best 2F5-binding characteristics obtained to date. The molecular modeling calculations identified the energetic and structural factors affecting the ability of the epitope to assume conformations capable of fitting into the complementarity determining region of the ELDKWA-binding, broadly neutralizing human mAb 2F5. Individual viruses were isolated from the library following competitive immunoselection and were tested using ELISA and fluorescence quenching experiments. Dissociation constants obtained using both techniques revealed that some of the newly isolated chimeras bind 2F5 with greater affinity than previously identified chimeric rhinoviruses. Molecular dynamics simulations of two of these same chimeras confirmed that their HIV inserts were partially preorganized for binding, which is largely responsible for their corresponding gains in binding affinity. The study illustrates the utility of combining structure-based experiments with computational modeling approaches for improving the odds of selecting vaccine component designs with preferred antigenic characteristics. The results obtained also confirm the flexibility of HRV as a presentation vehicle for HIV epitopes and the potential of this platform for the development of vaccine components against AIDS.
Collapse
|