1
|
Li S, Wang B, Jiang S, Lan X, Qiao Y, Nie J, Yin Y, Shi Y, Kong W, Shan Y. Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adeno-associated virus 8. J Vet Sci 2021; 22:e8. [PMID: 33522160 PMCID: PMC7850785 DOI: 10.4142/jvs.2021.22.e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. Objectives A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. Methods In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. Results The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. Conclusions The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaohui Lan
- The Second Hospital of Jilin University, Changchun 130012, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Ouyang T, Liu X, Ouyang H, Ren L. Mouse models of porcine circovirus 2 infection. Animal Model Exp Med 2018; 1:23-28. [PMID: 30891543 PMCID: PMC6357427 DOI: 10.1002/ame2.12009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
PCV2 is considered the main pathogen of porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD). However, the exact mechanism underlying PCVD/PCVAD is currently unknown. Mouse models of PCV2 are valuable experimental tools that can shed light on the pathogenesis of infection and will enable the evaluation of antiviral agents and vaccine candidates. In this review, we discuss the current state of knowledge of mouse models used in PCV2 research that has been performed to date, highlighting their strengths and limitations, as well as prospects for future PCV2 studies.
Collapse
Affiliation(s)
- Ting Ouyang
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Xiao‐hui Liu
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Hong‐sheng Ouyang
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| | - Lin‐zhu Ren
- Science and Technology Innovation Center for Animal Genome Editing of Jilin ProvinceCollege of Animal SciencesJilin UniversityChangchunJilinChina
| |
Collapse
|
3
|
Guo XQ, Wang LQ, Qiao H, Yang XW, Yang MF, Chen HY. Enhancement of the immunogenicity of a porcine circovirus type 2 DNA vaccine by a recombinant plasmid coexpressing capsid protein and porcine interleukin-6 in mice. Microbiol Immunol 2015; 59:174-80. [DOI: 10.1111/1348-0421.12244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/13/2015] [Accepted: 01/28/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Xiao-Qing Guo
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; 63 Nongye Road Zhengzhou 450002
| | - Lin-Qing Wang
- Department of Life Science; Zhengzhou Normal University; Zhengzhou 450044 Henan Province China
| | - Han Qiao
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; 63 Nongye Road Zhengzhou 450002
| | - Xing-Wu Yang
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; 63 Nongye Road Zhengzhou 450002
| | - Ming-Fan Yang
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; 63 Nongye Road Zhengzhou 450002
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; 63 Nongye Road Zhengzhou 450002
| |
Collapse
|
4
|
Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene. J Virol Methods 2014; 211:36-42. [PMID: 25445883 DOI: 10.1016/j.jviromet.2014.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.
Collapse
|
5
|
Gao Z, Dong Q, Jiang Y, Opriessnig T, Wang J, Quan Y, Yang Z. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res 2014; 183:56-62. [PMID: 24503223 DOI: 10.1016/j.virusres.2014.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants.
Collapse
Affiliation(s)
- Zhangzhao Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qinfang Dong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jingxiu Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanping Quan
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Dutton JL, Li B, Woo WP, Marshak JO, Xu Y, Huang ML, Dong L, Frazer IH, Koelle DM. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice. PLoS One 2013; 8:e76407. [PMID: 24098493 PMCID: PMC3789751 DOI: 10.1371/journal.pone.0076407] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/23/2013] [Indexed: 11/24/2022] Open
Abstract
While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2) challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.
Collapse
Affiliation(s)
| | - Bo Li
- Coridon Pty Ltd, Brisbane, Queensland, Australia
| | - Wai-Ping Woo
- Coridon Pty Ltd, Brisbane, Queensland, Australia
| | - Joshua O. Marshak
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yan Xu
- Coridon Pty Ltd, Brisbane, Queensland, Australia
| | - Meei-li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, Washington, United States of America
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ian H. Frazer
- Coridon Pty Ltd, Brisbane, Queensland, Australia
- Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Xiang QW, Wang X, Xie ZJ, Sun YN, Zhu YL, Wang SJ, Liu HJ, Jiang SJ. ORF3 of duck circovirus: A novel protein with apoptotic activity. Vet Microbiol 2012; 159:251-6. [DOI: 10.1016/j.vetmic.2012.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
8
|
Albrecht MT, Livingston BD, Pesce JT, Bell MG, Hannaman D, Keane-Myers AM. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague. Vaccine 2012; 30:4872-83. [PMID: 22633906 DOI: 10.1016/j.vaccine.2012.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
Abstract
Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined.
Collapse
Affiliation(s)
- Mark T Albrecht
- Biological Defense Research Directorate, Naval Medical Research Center, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
9
|
Albrecht MT, Eyles JE, Baillie LW, Keane-Myers AM. Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model. ACTA ACUST UNITED AC 2012; 65:505-9. [PMID: 22515653 DOI: 10.1111/j.1574-695x.2012.00974.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis.
Collapse
Affiliation(s)
- Mark T Albrecht
- Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | | | | | | |
Collapse
|
10
|
Beach NM, Meng XJ. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res 2011; 164:33-42. [PMID: 22005075 DOI: 10.1016/j.virusres.2011.09.041] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of an economically significant collection of disease syndromes in pigs, now known as porcine circovirus associated diseases (PCVADs) in the United States or porcine circovirus diseases (PCVDs) in Europe. Inactivated and subunit vaccines based on PCV2a genotype are commercially available and have been shown to be effective at decreasing mortality and increasing growth parameters in commercial swine herds. Since 2003, there has been a drastic global shift in the predominant prevalence of PCV2b genotype in swine populations, concurrently in most but not all cases with increased severity of clinical disease. Although the current commercial vaccines based on PCV2a do confer cross-protection against PCV2b, novel experimental vaccines based on PCV2b genotype such as modified live-attenuated vaccines are being developed and may provide a superior protection and reduce vaccine costs. In this review, we discuss the current understanding of the impact of PCV2 infection on the host immune response, review the efficacy of the currently available commercial PCV2 vaccines in experimental and field conditions, and provide insight into novel experimental approaches that are useful in the development of next generation vaccines against PCV2.
Collapse
Affiliation(s)
- Nathan M Beach
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913, USA
| | | |
Collapse
|
11
|
Cytotoxicity of ORF3 proteins from a nonpathogenic and a pathogenic porcine circovirus. J Virol 2010; 84:11440-7. [PMID: 20810737 DOI: 10.1128/jvi.01030-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) infection is associated with significant and serious swine diseases worldwide, while PCV1 appears to be a nonpathogenic virus. Previous studies demonstrated that the ORF3 protein of PCV2 (PCV2ORF3) was involved in PCV2 pathogenesis via its proapoptotic capability (J. Liu, I. Chen, Q. Du, H. Chua, and J. Kwang, J. Virol. 80:5065-5073, 2006). If PCV2ORF3-induced apoptosis is a determinant of virulence, PCV1ORF3 is hypothesized to lack this ability. The properties of PCV1 and PCV2 ORF3, expressed as fusion proteins to an enhanced green fluorescent protein (eGFP), were characterized with regard to their ability to cause cellular morphological changes, detachment, death, and apoptosis. PCV1ORF3 significantly induced more apoptotic cell death and was toxic to more different cell types than PCV2ORF3 was. PCV1ORF3-associated cell death was caspase dependent. PCV1ORF3 also induced poly(ADP-ribose) polymerase 1 (PARP) cleavage; however, whether PARP was involved in cell death requires further studies. Truncation of PCV1 and elongation of PCV2 ORF3 proteins revealed that the first 104 amino acids contain a domain capable of inducing cell death, whereas the C terminus of PCV1ORF3 contains a domain possibly responsible for enhancing cell death. These results suggest that the pathogenicity of PCV2 for pigs is either not determined or not solely determined by the ORF3 protein.
Collapse
|