1
|
Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proc Natl Acad Sci U S A 2021; 118:2022269118. [PMID: 33876762 DOI: 10.1073/pnas.2022269118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Guanylate-binding proteins (GBPs) form a family of dynamin-related large GTPases which mediate important innate immune functions. They were proposed to form oligomers upon GTP binding/hydrolysis, but the molecular mechanisms remain elusive. Here, we present crystal structures of C-terminally truncated human GBP5 (hGBP51-486), comprising the large GTPase (LG) and middle (MD) domains, in both its nucleotide-free monomeric and nucleotide-bound dimeric states, together with nucleotide-free full-length human GBP2. Upon GTP-loading, hGBP51-486 forms a closed face-to-face dimer. The MD of hGBP5 undergoes a drastic movement relative to its LG domain and forms extensive interactions with the LG domain and MD of the pairing molecule. Disrupting the MD interface (for hGBP5) or mutating the hinge region (for hGBP2/5) impairs their ability to inhibit HIV-1. Our results point to a GTP-induced dimerization mode that is likely conserved among all GBP members and provide insights into the molecular determinants of their antiviral function.
Collapse
|
2
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
3
|
HIV-1 Matrix Trimerization-Impaired Mutants Are Rescued by Matrix Substitutions That Enhance Envelope Glycoprotein Incorporation. J Virol 2019; 94:JVI.01526-19. [PMID: 31619553 DOI: 10.1128/jvi.01526-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation.IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.
Collapse
|
4
|
Hotter D, Bosso M, Jønsson KL, Krapp C, Stürzel CM, Das A, Littwitz-Salomon E, Berkhout B, Russ A, Wittmann S, Gramberg T, Zheng Y, Martins LJ, Planelles V, Jakobsen MR, Hahn BH, Dittmer U, Sauter D, Kirchhoff F. IFI16 Targets the Transcription Factor Sp1 to Suppress HIV-1 Transcription and Latency Reactivation. Cell Host Microbe 2019; 25:858-872.e13. [PMID: 31175045 PMCID: PMC6681451 DOI: 10.1016/j.chom.2019.05.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The interferon γ-inducible protein 16 (IFI16) is known as immune sensor of retroviral DNA intermediates. We show that IFI16 restricts HIV-1 independently of immune sensing by binding and inhibiting the host transcription factor Sp1 that drives viral gene expression. This antiretroviral activity and ability to bind Sp1 require the N-terminal pyrin domain and nuclear localization of IFI16, but not the HIN domains involved in DNA binding. Highly prevalent clade C HIV-1 strains are more resistant to IFI16 and less dependent on Sp1 than other HIV-1 subtypes. Furthermore, inhibition of Sp1 by IFI16 or pharmacologically by Mithramycin A suppresses reactivation of latent HIV-1 in CD4+ T cells. Finally, IFI16 also inhibits retrotransposition of LINE-1, known to engage Sp1, and murine IFI16 homologs restrict Friend retrovirus replication in mice. Thus, IFI16 restricts retroviruses and retrotransposons by interfering with Sp1-dependent gene expression, and evasion from this restriction may facilitate spread of HIV-1 subtype C.
Collapse
Affiliation(s)
- Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Kasper L Jønsson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Christian Krapp
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Atze Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Alina Russ
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Laura J Martins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
5
|
Schwerdtfeger M, Andersson AMC, Neukirch L, Holst PJ. Virus-like vaccines against HIV/SIV synergize with a subdominant antigen T cell vaccine. J Transl Med 2019; 17:175. [PMID: 31126293 PMCID: PMC6534914 DOI: 10.1186/s12967-019-1924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background In non-human primates (NHPs) and humans, partial protection from HIV/SIV infection or suppression of replication is achievable by Env-binding antibodies and Gag-specific CD8+ T-cells targeting protective epitopes. Unfortunately, such T-cell responses are frequently dominated by responses to non-protective, variable epitopes. In this study we attempt to combine three independent approaches, each developed to prevent immunodominance of non-protective epitopes. These approaches were (1) vaccines consisting exclusively of putatively protective p24 Gag highly conserved elements (CEs), (2) vaccines using solely subdominant antigens which were acutely protective in a recent NHP trial, and (3) virus-encoded virus-like particle vaccines (virus-like vaccines/VLVs) using heterologous Env and Gag sequences to enable selection of broadly cross-reactive responses and to avoid immunodominance of non-conserved sequences in prime-boost regimens as previously observed. Methods We vaccinated outbred CD1 mice with HIV-1 clade B Gag/Env encoded in an adenoviral prime and SIVmac239 Gag/Env in an MVA boost. We combined this completely heterologous immunization regimen and the homologous SIVmac239 Gag/Env immunization regimen with an additional prime encoding SIV CEs and accessory antigens Rev, Vif and Vpr (Ad-Ii-SIVCErvv). T-cell responses were analyzed by intracellular cytokine staining of splenocytes and antibody responses by trimer-specific ELISA, avidity and isotype-specific ELISA. Results Env dominance could be avoided successfully in the completely heterologous prime-boost regimen, but Env immunodominance reappeared when Ad-Ii-SIVCErvv was added to the prime. This regimen did however still induce more cross-reactive Gag-specific CD8+ T-cells and Env-specific antibodies. Including Ad-Ii-SIVCErvv in the homologous prime-boost not only elicited accessory antigen-specific CD8+ memory T-cells, but also significantly increased the ratio of Gag- to Env-specific CD8+ T-cells. The CD4+ T-cell response shifted away from structural antigens previously associated with infection-enhancement. Conclusion The homologous Gag/Env prime-boost with Ad-Ii-SIVCErvv prime combined acutely protective CD8+ T-cell responses to subdominant antigens and Env-binding antibodies with chronically protective Gag-specific CD8+ T-cells in outbred mice. This vaccine regimen should be tested in an NHP efficacy trial. Electronic supplementary material The online version of this article (10.1186/s12967-019-1924-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138, Naples, Italy.
| | - Anne-Marie Carola Andersson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,InProTherApS, BioInnovation Institute, COBIS, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Lasse Neukirch
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,InProTherApS, BioInnovation Institute, COBIS, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
6
|
Braun E, Hotter D, Koepke L, Zech F, Groß R, Sparrer KM, Müller JA, Pfaller CK, Heusinger E, Wombacher R, Sutter K, Dittmer U, Winkler M, Simmons G, Jakobsen MR, Conzelmann KK, Pöhlmann S, Münch J, Fackler OT, Kirchhoff F, Sauter D. Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Rep 2019; 27:2092-2104.e10. [DOI: 10.1016/j.celrep.2019.04.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
|
7
|
Buttler CA, Pezeshkian N, Fernandez MV, Aaron J, Norman S, Freed EO, van Engelenburg SB. Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation. Nat Commun 2018; 9:1861. [PMID: 29748537 PMCID: PMC5945595 DOI: 10.1038/s41467-018-04220-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs on the inner leaflet of the host cell plasma membrane, incorporating the essential viral envelope glycoprotein (Env) within a budding lattice of HIV-1 Gag structural proteins. The mechanism by which Env incorporates into viral particles remains poorly understood. To determine the mechanism of recruitment of Env to assembly sites, we interrogate the subviral angular distribution of Env on cell-associated virus using multicolor, three-dimensional (3D) superresolution microscopy. We demonstrate that, in a manner dependent on cell type and on the long cytoplasmic tail of Env, the distribution of Env is biased toward the necks of cell-associated particles. We postulate that this neck-biased distribution is regulated by vesicular retention and steric complementarity of Env during independent Gag lattice formation.
Collapse
Affiliation(s)
- Carmen A Buttler
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Nairi Pezeshkian
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Melissa V Fernandez
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Sofya Norman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Schuyler B van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
8
|
Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E, LaBranche CC, Montefiori DC, Lobby JL, Saunders KO, Liao HX, Korber BT, Sutherland LL, Scearce RM, Hraber PT, Tombácz I, Muramatsu H, Ni H, Balikov DA, Li C, Mui BL, Tam YK, Krammer F, Karikó K, Polacino P, Eisenlohr LC, Madden TD, Hope MJ, Lewis MG, Lee KK, Hu SL, Hensley SE, Cancro MP, Haynes BF, Weissman D. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 2018; 215:1571-1588. [PMID: 29739835 PMCID: PMC5987916 DOI: 10.1084/jem.20171450] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/25/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022] Open
Abstract
T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Letitia Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hans P Verkerke
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Jenna L Lobby
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Houping Ni
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Balikov
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA
| | - Laurence C Eisenlohr
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA.,Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Yu JS, Liao HX, Pritchett J, Bowman C, Vivian C, Parks R, Xia SM, Cooper M, Williams WB, Bonsignori M, Reed SG, Chen M, Vandergrift N, Rice CM, Haynes BF. Development of a recombinant yellow fever vector expressing a HIV clade C founder envelope gp120. J Virol Methods 2017; 249:85-93. [PMID: 28837840 DOI: 10.1016/j.jviromet.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022]
Abstract
Development of a HIV-1 vaccine is a major global priority. The yellow fever virus (YFV) attenuated vaccine 17D is among the most effective of currently used vaccines. However, the stability of the YFV17D vector when carrying non-flavivirus genes has been problematic. We have constructed and expressed HIV-1 Env in YFV17D with either single transmembrane (STM) or double transmembrane (DTM) YFV E protein domains for the development of anti-HIV antibodies. Here we describe modifications of the YFV17D vector such that HIV-1 Env gp120 is expressed in up to 5 passages in Vero cells. Immunization with recombinant YFV17D vector prime followed by HIV-1 CH505 TF gp120 protein boosts were able to induce neutralizing antibodies for a HIV-1 tier 1 isolate in mice. This modified YFV vector may be a starting point for constructing HIV-1 vaccine candidate priming vectors.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| | - Hua-Xin Liao
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Jamie Pritchett
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Cindy Bowman
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Callie Vivian
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Robert Parks
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Shi-Mao Xia
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Melissa Cooper
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Wilton B Williams
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Mattia Bonsignori
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, United States
| | - Meng Chen
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Nathan Vandergrift
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, United States
| | - Barton F Haynes
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
10
|
Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation. PLoS Pathog 2017; 13:e1006598. [PMID: 28859166 PMCID: PMC5597281 DOI: 10.1371/journal.ppat.1006598] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. The cellular transcription factor NF-κB plays a complex role in the lentiviral replication cycle. On the one hand, activation of NF-κB is required for efficient transcription of viral genes and reactivation of latent proviruses. On the other hand, NF-κB is also a key driver of antiviral gene expression, immune activation and progression to AIDS. As a result, primate lentiviruses tightly regulate the activation of NF-κB throughout their replication cycle to enable transcription of viral genes while minimizing antiviral gene expression. Here, we show that human and simian immunodeficiency viruses have evolved at least three alternative strategies to suppress NF-κB-dependent immune activation: HIV-2 and most SIVs prevent T cell activation via Nef-mediated downmodulation of CD3. In comparison, HIV-1 and its vpu-containing SIV precursors inhibit NF-κB activation via their accessory protein Vpu and lost the CD3 downmodulation function of Nef. Finally, SIVcol and SIVolc, infecting mantled guerezas and olive colobus monkeys, respectively, utilize Vpr. Our findings emphasize the key role of NF-κB as inducer of antiretroviral immune responses and add to the accumulating evidence that lentiviral accessory proteins target innate signaling cascades by sophisticated mechanisms to evade restriction.
Collapse
|
11
|
Meyerhoff RR, Scearce RM, Ogburn DF, Lockwood B, Pickeral J, Kuraoka M, Anasti K, Eudailey J, Eaton A, Cooper M, Wiehe K, Montefiori DC, Tomaras G, Ferrari G, Alam SM, Liao HX, Korber B, Gao F, Haynes BF. HIV-1 Consensus Envelope-Induced Broadly Binding Antibodies. AIDS Res Hum Retroviruses 2017; 33:859-868. [PMID: 28314374 PMCID: PMC5564029 DOI: 10.1089/aid.2016.0294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibodies that cross-react with multiple HIV-1 envelopes (Envs) are useful reagents for characterizing Env proteins and for soluble Env capture and purification assays. We previously reported 10 murine monoclonal antibodies induced by group M consensus Env, CON-6 immunization. Each demonstrated broad cross-reactivity to recombinant Envs. Here we characterized the Env epitopes to which they bind. Seven mapped to linear epitopes in gp120, five at the Env N-terminus, and two at the Env C-terminus. One antibody, 13D7, bound at the gp120 N-terminus (aa 30-42), reacted with HIV-1-infected CD4+ T cells, and when expressed in a human IgG1 backbone, mediated antibody-dependent cellular cytotoxicity. Antibody 18F11 bound at the gp120 C-terminus (aa 445-459) and reactivity was glycan dependent. Antibodies 13D7, 3B3, and 16H3 bound to 100 percent of HIV-1 Envs tested in ELISA and sodium dodecyl sulfate/polyacrylamide gel electrophoresis/western blot analysis. These data define the epitopes of monoclonal antibody reagents for characterization of recombinant Envs, one epitope of which is also expressed on the surface of HIV-1-infected CD4+ T cells.
Collapse
Affiliation(s)
- R. Ryan Meyerhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Richard M. Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Damon F. Ogburn
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Brad Lockwood
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Joy Pickeral
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Masa Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Melissa Cooper
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
The function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived from colostral B cells. Mucosal Immunol 2016; 9:414-27. [PMID: 26242599 PMCID: PMC4744153 DOI: 10.1038/mi.2015.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
Despite the risk of transmitting HIV-1, mothers in resource-poor areas are encouraged to breastfeed their infants because of beneficial immunologic and nutritional factors in milk. Interestingly, in the absence of antiretroviral prophylaxis, the overwhelming majority of HIV-1-exposed, breastfeeding infants are naturally protected from infection. To understand the role of HIV-1 envelope (Env)-specific antibodies in breast milk in natural protection against infant virus transmission, we produced 19 HIV-1 Env-specific monoclonal antibodies (mAbs) isolated from colostrum B cells of HIV-1-infected mothers and investigated their specificity, evolution, and anti-HIV-1 functions. Despite the previously reported genetic compartmentalization and gp120-specific bias of colostrum HIV Env-specific B cells, the colostrum Env-specific mAbs described here demonstrated a broad range of gp120 epitope specificities and functions, including inhibition of epithelial cell binding and dendritic cell-mediated virus transfer, neutralization, and antibody-dependent cellular cytotoxicity. We also identified divergent patterns of colostrum Env-specific B-cell lineage evolution with respect to crossreactivity to gastrointestinal commensal bacteria, indicating that commensal bacterial antigens play a role in shaping the local breast milk immunoglobulin G (IgG) repertoire. Maternal vaccine strategies to specifically target this breast milk B-cell population may be necessary to achieve safe breastfeeding for all HIV-1-exposed infants.
Collapse
|
13
|
Qin Y, Banerjee S, Agrawal A, Shi H, Banasik M, Lin F, Rohl K, LaBranche C, Montefiori DC, Cho MW. Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop. PLoS One 2015; 10:e0128823. [PMID: 26039641 PMCID: PMC4454676 DOI: 10.1371/journal.pone.0128823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
We recently reported the induction of potent, cross-clade neutralizing antibodies (nAbs) against Human Immunodeficiency Virus type-1 (HIV-1) in rabbits using gp120 based on an M-group consensus sequence. To better characterize these antibodies, 93 hybridomas were generated, which represent the largest panel of monoclonal antibodies (mAbs) ever generated from a vaccinated rabbit. The single most frequently recognized epitope of the isolated mAbs was at the very C-terminal end of the protein (APTKAKRRVVEREKR), followed by the V3 loop. A total of seven anti-V3 loop mAbs were isolated, two of which (10A3 and 10A37) exhibited neutralizing activity. In contrast to 10A3 and most other anti-V3 loop nAbs, 10A37 was atypical with its epitope positioned more towards the C-terminal half of the loop. To our knowledge, 10A37 is the most potent and broadly neutralizing anti-V3 loop mAb induced by vaccination. Interestingly, all seven anti-V3 loop mAbs competed with PGT121, suggesting a possibility that early induction of potent anti-V3 loop antibodies could prevent induction of more broadly neutralizing PGT121-like antibodies that target the conserved base of the V3 loop stem.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Binding Sites, Antibody
- Conserved Sequence
- Epitopes/chemistry
- Epitopes/immunology
- Female
- HIV Antibodies/biosynthesis
- HIV Antibodies/chemistry
- HIV Antibodies/isolation & purification
- HIV Envelope Protein gp120/administration & dosage
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV-1/chemistry
- HIV-1/immunology
- Hybridomas/immunology
- Models, Molecular
- Molecular Sequence Data
- Neutralization Tests
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rabbits
- Vaccination
Collapse
Affiliation(s)
- Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Saikat Banerjee
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Aditi Agrawal
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Heliang Shi
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Feng Lin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Kari Rohl
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Durham, NC, 27710, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, NC, 27710, United States of America
| | - Michael W. Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| |
Collapse
|
14
|
Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:726-41. [PMID: 25924766 PMCID: PMC4478521 DOI: 10.1128/cvi.00075-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.
Collapse
|
15
|
Pre-clinical development of a recombinant, replication-competent adenovirus serotype 4 vector vaccine expressing HIV-1 envelope 1086 clade C. PLoS One 2013; 8:e82380. [PMID: 24312658 PMCID: PMC3849430 DOI: 10.1371/journal.pone.0082380] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. METHODS The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. RESULTS Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. CONCLUSIONS The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.
Collapse
|
16
|
Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl Acad Sci U S A 2013; 110:18220-5. [PMID: 24145401 DOI: 10.1073/pnas.1307336110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1-neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1-neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1-exposed breastfed infants are protected against mucosal HIV-1 transmission.
Collapse
|
17
|
Chen Y, Vaine M, Wallace A, Han D, Wan S, Seaman MS, Montefiori D, Wang S, Lu S. A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design. J Virol 2013; 87:10232-43. [PMID: 23864612 PMCID: PMC3754024 DOI: 10.1128/jvi.00837-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/07/2013] [Indexed: 01/13/2023] Open
Abstract
The majority of available monoclonal antibodies (MAbs) in the current HIV vaccine field are generated from HIV-1-infected people. In contrast, preclinical immunogenicity studies have mainly focused on polyclonal antibody responses in experimental animals. Although rabbits have been widely used for antibody studies, there has been no report of using rabbit MAbs to dissect the specificity of antibody responses for AIDS vaccine development. Here we report on the production of a panel of 12 MAbs from a New Zealand White (NZW) rabbit that was immunized with an HIV-1 JR-FL gp120 DNA prime and protein boost vaccination regimen. These rabbit MAbs recognized a diverse repertoire of envelope (Env) epitopes ranging from the highly immunogenic V3 region to several previously underappreciated epitopes in the C1, C4, and C5 regions. Nine MAbs showed cross-reactivity to gp120s of clades other than clade B. Increased somatic mutation and extended CDR3 were observed with Ig genes of several molecularly cloned rabbit MAbs. Phylogenic tree analysis showed that the heavy chains of MAbs recognizing the same region on gp120 tend to segregate into an independent subtree. At least three rabbit MAbs showed neutralizing activities with various degrees of breadth and potency. The establishment of this rabbit MAb platform will significantly enhance our ability to test optimal designs of Env immunogens to gain a better understanding of the structural specificity and evolution process of Env-specific antibody responses elicited by candidate AIDS vaccines.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shengqin Wan
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael S. Seaman
- Department of Medicine, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
18
|
HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages. J Virol 2012; 86:7496-507. [PMID: 22553329 DOI: 10.1128/jvi.00426-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120(W6.1D)). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of V(H) somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120(W6.1D) was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.
Collapse
|
19
|
Chen W, Dimitrov DS. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res Hum Retroviruses 2012; 28:425-34. [PMID: 21827278 DOI: 10.1089/aid.2011.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| |
Collapse
|
20
|
Ma BJ, Alam SM, Go EP, Lu X, Desaire H, Tomaras GD, Bowman C, Sutherland LL, Scearce RM, Santra S, Letvin NL, Kepler TB, Liao HX, Haynes BF. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS Pathog 2011; 7:e1002200. [PMID: 21909262 PMCID: PMC3164629 DOI: 10.1371/journal.ppat.1002200] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 06/24/2011] [Indexed: 11/21/2022] Open
Abstract
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41. Critical to the design of an effective HIV-1 vaccine that will induce long-lasting broadly neutralizing antibodies is to understand why broad neutralizing antibodies are not induced. One hypothesis is that there are “holes” in the naïve B cell repertoires for unmutated B cell receptors that can bind to HIV-1 envelope (Env) neutralizing epitopes. In this paper, we test this hypothesis for the rare HIV-1 envelope gp41 broad neutralizing monoclonal antibodes (mAbs), called 2F5 and 4E10, and show that indeed, fully glycosylated Env does not bind to inferred unmutated ancestor antibodies (mimics of naïve B cell receptors) of mAbs 2F5 and 4E10, but that partially deglycosylated Envs that have had glycans removed under non-denaturing conditions, did bind to 2F5 and 4E10 unmutated ancestor antibodies. Thus, rather than there being a lack of existence of germline B cell receptors for gp41 broad neutralizing antibodies, one impediment to induction of gp41 broad neutralizing antibodies may be glycan interference with unmutated antibody binding to gp41 envelope.
Collapse
Affiliation(s)
- Ben-Jiang Ma
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Deparment of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Laura L. Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Richard M. Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norman L. Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas B. Kepler
- Center for Computational Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (H-XL); (BFH)
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (H-XL); (BFH)
| |
Collapse
|
21
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
22
|
Luo G, Quan G, Guo J, Zhang H, Li S, Wu W, Nie L, Dong Y, Wu S, Zheng G, Yang J, Xu J, Wang W. A basic phenylalanine-rich oligo-peptide causes antibody cross-reactivity. Electrophoresis 2011; 32:752-63. [PMID: 21365653 DOI: 10.1002/elps.201000446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 11/08/2022]
Abstract
Glycolate oxidase (GO) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) are the two enzymes that serve key functions in the photorespiration and photosynthesis of plants. A 2 kDa highly basic phenylalanine-rich oligo-peptide (BOP) binds to the surface of acidic GO via ionic and hydrophobic interactions, forming the GO-BOP complex (GC). Previously, RubisCO was thought to exist as a single species composed of a large (rbc L, 54 kDa) and a small subunit (rbc S, 14 kDa). Here we show for the first time, using 2-DE, SDS-PAGE, immunoassays and amino acid determination, that BOP also interacts with RubisCO and that many RubisCO-BOP complexes (RCs), differing in pI, hydrophobicity and activity, coexist in green leaves. GCs, RCs and crude extract from green leaves analyzed by SDS-PAGE Western blotting showed that BOP exists either in subunit-BOP complexes (GO subunit-BOP, rbc L-BOP and rbc S-BOP etc.), with a wide variation in the number and the position of BOPs bound to each subunit molecular, or alone without a binding partner. When rbc L-BOP and rbc S-BOP were assayed by SDS-PAGE, BOP was dissociated from the subunit and it self-assembled to form 37 different BOP polymers (basic phenylalanine-rich protein) whose molecular weights (M(r)s) ranged from 34.0 to 91.6 kDa, indicating that the M(r) of BOP is about 2 kDa. Thus, the addition of BOP changes the M(r) of the subunit-BOP complexes so minimally that the rbc L and rbc S run at their predicted M(r)s on SDS-PAGE. In summary, the results described here demonstrate that the presence of BOP in complexes (both subunit-BOP complex and protein-BOP complex) can cause cross-reactivity of antibodies against different proteins.
Collapse
Affiliation(s)
- Gangyue Luo
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kirchherr JL, Hamilton J, Lu X, Gnanakaran S, Muldoon M, Daniels M, Kasongo W, Chalwe V, Mulenga C, Mwananyanda L, Musonda RM, Yuan X, Montefiori DC, Korber BT, Haynes BF, Gao F. Identification of amino acid substitutions associated with neutralization phenotype in the human immunodeficiency virus type-1 subtype C gp120. Virology 2010; 409:163-74. [PMID: 21036380 DOI: 10.1016/j.virol.2010.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/22/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Neutralizing antibodies (Nabs) are thought to play an important role in prevention and control of HIV-1 infection and should be targeted by an AIDS vaccine. It is critical to understand how HIV-1 induces Nabs by analyzing viral sequences in both tested viruses and sera. Neutralization susceptibility to antibodies in autologous and heterologous plasma was determined for multiple Envs (3-6) from each of 15 subtype-C-infected individuals. Heterologous neutralization was divided into two distinct groups: plasma with strong, cross-reactive neutralization (n=9) and plasma with weak neutralization (n=6). Plasma with cross-reactive heterologous Nabs also more potently neutralized contemporaneous autologous viruses. Analysis of Env sequences in plasma from both groups revealed a three-amino-acid substitution pattern in the V4 region that was associated with greater neutralization potency and breadth. Identification of such potential neutralization signatures may have important implications for the development of HIV-1 vaccines capable of inducing Nabs to subtype C HIV-1.
Collapse
Affiliation(s)
- Jennifer L Kirchherr
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lu X, Hora B, Cai F, Gao F. Generation of random mutant libraries with multiple primers in a single reaction. J Virol Methods 2010; 167:146-51. [PMID: 20362002 DOI: 10.1016/j.jviromet.2010.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/26/2022]
Abstract
Characterization of multiple sites in a single gene that are important in biological phenotypes is challenging due to the difficulty to generate many mutants representing all or a majority of combinations of mutations in the gene. Using the HIV-1 env and pol genes as templates, four random libraries were generated representing different combinations of mutations introduced by up to 36 mutagenesis primers in a single assay. Over 86% of the clones contained mutations and the mutants tended to have single or fewer mutations in the libraries. When protein size was used as a screening marker, all identified clones contained at least 2 mutations and up to 12 mutations were detected in a single clone. Nearly all mutant clones in each library contained unique mutations, indicating that mutants in the library were generated at random. Closely related mutations which were overlapped by neighboring mutagenesis primers were often introduced in this system. Analysis of the env library showed that some potential N-linked glycosylation sites did not increase the Env molecular mass significantly, suggesting they were not used for glycosylation or only limited carbohydrate moieties were added at these sites. This novel method can serve as a powerful tool to study the biological phenotypes of genes whose functions are determined by multiple sites.
Collapse
Affiliation(s)
- Xiaozhi Lu
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
25
|
Chen W, Zhu Z, Liao H, Quinnan GV, Broder CC, Haynes BF, Dimitrov DS. Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins. Viruses 2010; 2:547-565. [PMID: 21755021 PMCID: PMC3133461 DOI: 10.3390/v2020547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elicitation of antibodies with potent and broad neutralizing activity against HIV by immunization remains a challenge. Several monoclonal antibodies (mAbs) isolated from humans with HIV-1 infection exhibit such activity but vaccine immunogens based on structures containing their epitopes have not been successful for their elicitation. All known broadly neutralizing mAbs (bnmAbs) are immunoglobulin (Ig) Gs (IgGs) and highly somatically hypermutated which could impede their elicitation. Ig Ms (IgMs) are on average significantly less divergent from germline antibodies and are relevant for the development of vaccine immunogens but are underexplored compared to IgGs. Here we describe the identification and characterization of several human IgM-derived mAbs against HIV-1 which were selected from a large phage-displayed naive human antibody library constructed from blood, lymph nodes and spleens of 59 healthy donors. These antibodies bound with high affinity to recombinant envelope glycoproteins (gp140s, Envs) of HIV-1 isolates from different clades. They enhanced or did not neutralize infection by some of the HIV-1 primary isolates using CCR5 as a coreceptor but neutralized all CXCR4 isolates tested although weakly. One of these antibodies with relatively low degree of somatic hypermutation was more extensively characterized. It bound to a highly conserved region partially overlapping with the coreceptor binding site and close to but not overlapping with the CD4 binding site. These results suggest the existence of conserved structures that could direct the immune response to non-neutralizing or even enhancing antibodies which may represent a strategy used by the virus to escape neutralizing immune responses. Further studies will show whether such a strategy plays a role in HIV infection of humans, how important that role could be, and what the mechanisms of infection enhancement are. The newly identified mAbs could be used as reagents to further characterize conserved non-neutralizing, weakly neutralizing or enhancing epitopes and modify or remove them from candidate vaccine immunogens.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, MD 21702, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1770; Fax: +1-301-846-5598
| | - Zhongyu Zhu
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, MD 21702, USA
- Basic Research Program, Science Applications International Corporation-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Huaxin Liao
- Duke University Medical Center, Durham, NC 27710, USA
| | - Gerald V. Quinnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, MD 21702, USA
| |
Collapse
|