1
|
Williams EP, Nandi A, Nam V, Allen LJS, Trindade AA, Kosiewicz MM, Jonsson CB. Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells. Viruses 2023; 15:1806. [PMID: 37766212 PMCID: PMC10535571 DOI: 10.3390/v15091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Aadrita Nandi
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Victoria Nam
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Linda J. S. Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - A. Alexandre Trindade
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Michele M. Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
2
|
Gallo G, Kotlik P, Roingeard P, Monot M, Chevreux G, Ulrich RG, Tordo N, Ermonval M. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction. PLoS Negl Trop Dis 2022; 16:e0010844. [PMID: 36223391 PMCID: PMC9591050 DOI: 10.1371/journal.pntd.0010844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.
Collapse
Affiliation(s)
- Giulia Gallo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
- * E-mail: (ME); (GG)
| | - Petr Kotlik
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Philippe Roingeard
- INSERM U1259 et plateforme IBISA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics Platform, C2RT, Paris, France
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Partner site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), Greifswald-Insel Riems, Germany
| | - Noël Tordo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinée
| | - Myriam Ermonval
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- * E-mail: (ME); (GG)
| |
Collapse
|
3
|
Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021; 13:2417. [PMID: 34960686 PMCID: PMC8704896 DOI: 10.3390/v13122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense, tripartite RNA virus that is endemic to Africa and the Arabian Peninsula. It can cause severe disease and mortality in humans and domestic livestock and is a concern for its potential to spread more globally. RVFV's nucleocapsid protein (N) is an RNA-binding protein that is necessary for viral transcription, replication, and the production of nascent viral particles. We have conducted crosslinking, immunoprecipitation, and sequencing (CLIP-seq) to characterize N interactions with host and viral RNAs during infection. In parallel, to precisely measure intracellular N levels, we employed multiple reaction monitoring mass spectrometry (MRM-MS). Our results show that N binds mostly to host RNAs at early stages of infection, yielding nascent virus particles of reduced infectivity. The expression of N plateaus 10 h post-infection, whereas the intracellular viral RNA concentration continues to increase. Moreover, the virions produced later in infection have higher infectivity. Taken together, the detailed examination of these N-RNA interactions provides insight into how the regulated expression of N and viral RNA produces both infectious and incomplete, noninfectious particles.
Collapse
Affiliation(s)
- Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
| | - Eric P. Schultz
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - J. Stephen Lodmell
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
4
|
Wang YC, Wei Z, Lv X, Han S, Wang Z, Fan C, Zhang X, Shao J, Zhao YH, Sui L, Chen C, Liao M, Wang B, Jin N, Li C, Ma J, Hou ZJ, Yang Z, Han Z, Zhang Y, Niu J, Wang W, Wang Y, Liu Q. A new nairo-like virus associated with human febrile illness in China. Emerg Microbes Infect 2021; 10:1200-1208. [PMID: 34044749 PMCID: PMC8212832 DOI: 10.1080/22221751.2021.1936197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017–2018. The median age of patients was 48 years (interquartile range 41–53 years); the median incubation period was 7 days (interquartile range 3–12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.
Collapse
Affiliation(s)
- Yan-Chun Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Xiaolong Lv
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Shuzheng Han
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Zedong Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Changfa Fan
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xu Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Jianwei Shao
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Ying-Hua Zhao
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Liyan Sui
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Chen
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Bo Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Ningyi Jin
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Chang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Jun Ma
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhi-Jun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhen Han
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Junqi Niu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Youchun Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Quan Liu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China.,College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021; 13:v13050784. [PMID: 33925004 PMCID: PMC8146327 DOI: 10.3390/v13050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.
Collapse
|
6
|
Ma J, Lv XL, Zhang X, Han SZ, Wang ZD, Li L, Sun HT, Ma LX, Cheng ZL, Shao JW, Chen C, Zhao YH, Sui L, Liu LN, Qian J, Wang W, Liu Q. Identification of a new orthonairovirus associated with human febrile illness in China. Nat Med 2021; 27:434-439. [PMID: 33603240 DOI: 10.1038/s41591-020-01228-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
The genus Orthonairovirus, which is part of the family Nairoviridae, includes the important tick-transmitted pathogens Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, as well as many other poorly characterized viruses found in ticks, birds and mammals1,2. In this study, we identified a new orthonairovirus, Songling virus (SGLV), from patients who reported being bitten by ticks in Heilongjiang Province in northeastern China. SGLV shared similar genomic and morphological features with orthonairoviruses and phylogenetically formed a unique clade in Tamdy orthonairovirus of the Nairoviridae family. The isolated SGLV induced cytopathic effects in human hepatoma cells in vitro. SGLV infection was confirmed in 42 hospitalized patients analyzed between 2017 and 2018, with the main clinical manifestations being headache, fever, depression, fatigue and dizziness. More than two-thirds (69%) of patients generated virus-specific antibody responses in the acute phase. Taken together, these results suggest that this newly discovered orthonairovirus is associated with human febrile illness in China.
Collapse
Affiliation(s)
- Jun Ma
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiao-Long Lv
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Xu Zhang
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Shu-Zheng Han
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Ze-Dong Wang
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - He-Ting Sun
- State Forestry and Grassland Administration, Shenyang, Liaoning Province, China
| | - Li-Xin Ma
- Alongshan Forestry Bureau, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Zheng-Lei Cheng
- Alongshan Forest Pest Control Station, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Jian-Wei Shao
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Chen Chen
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying-Hua Zhao
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liyan Sui
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin-Na Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Wei Wang
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China.
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China. .,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China. .,The First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Li Z, Shen Y, Song Y, Zhang Y, Zhang C, Ma Y, Zhang F, Chen L. ER stress-related molecules induced by Hantaan virus infection in differentiated THP-1 cells. Cell Stress Chaperones 2021; 26:41-50. [PMID: 32870480 PMCID: PMC7736395 DOI: 10.1007/s12192-020-01150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced by virus infection. In this part, we explored whether Hantaan virus (HTNV) infection could induce ER stress in differentiated THP-1 (dTHP-1) cells. It showed that the mRNA and protein levels of ER stress-related 78 kDa glucose-regulated protein (GRP78, HSPA5) and mRNA levels of X box-binding protein 1 (XBP-1), activating transcription factor 6(ATF6) and PKR-like ER kinase (PERK) after HTNV infection, were significantly higher than that in uninfected control group. However, the mRNA levels of C/EBP homologous protein (CHOP), glucose-regulated protein 94 (GRP94, HSPC4), and inositol-requiring enzyme1 (IRE1) were not significantly different between the infected group and the untreated group in 2 h after virus infection. It is unusual in activating GRP78 but not GRP94. Meanwhile, dTHP-1 cells infected with HTNV at 12 h did not show obvious apoptosis. These results indicated that the HTNV infection could induce the unfolded protein response (UPR) in dTHP-1 cells, without directly leading to cell apoptosis during 12 h after virus infection.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an, Shaanxi, China
| | - Yuting Shen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yun Song
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
8
|
Chen QZ, Wang X, Luo F, Li N, Zhu N, Lu S, Zan YX, Zhong CJ, Wang MR, Hu HT, Zhang YZ, Xiong HR, Hou W. HTNV Sensitizes Host Toward TRAIL-Mediated Apoptosis-A Pivotal Anti-hantaviral Role of TRAIL. Front Immunol 2020; 11:1072. [PMID: 32636833 PMCID: PMC7317014 DOI: 10.3389/fimmu.2020.01072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
Hantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and have led to public health threat in China. The pathogenesis of HFRS is complex and involves capillary leakage due to the infection of vascular endothelial cells. Accumulating evidence has demonstrated that hantavirus can induce apoptosis in many cells, but the mechanism remains unclear. Our studies showed that Hantaan virus (HTNV) infection could induce TNF-related apoptosis-inducing ligand (TRAIL) expression in primary human umbilical vein endothelial cells (HUVECs) and sensitize host cells toward TRAIL-mediated apoptosis. Furthermore, TRAIL interference could inhibit apoptosis and enhance the production of HTNV as well as reduce IFN-β production, while exogenous TRAIL treatment showed reverse outcome: enhanced apoptosis and IFN-β production as well as a lower level of viral replication. We also observed that nucleocapsid protein (NP) and glycoprotein (GP) of HTNV could promote the transcriptions of TRAIL and its receptors. Thus, TRAIL was upregulated by HTNV infection and then exhibited significant antiviral activities in vitro, and it was further confirmed in the HTNV-infected suckling mice model that TRAIL treatment significantly reduced viral load, alleviated virus-induced tissue lesions, increased apoptotic cells, and decreased the mortality. In conclusion, these results demonstrate that TRAIL-dependent apoptosis and IFN-β production could suppress HTNV replication and TRAIL treatment might be a novel therapeutic target for HTNV infection.
Collapse
Affiliation(s)
- Qing-Zhou Chen
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Fan Luo
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Ning Li
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Ni Zhu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Shuang Lu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Yu-Xing Zan
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Chao-Jie Zhong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Mei-Rong Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Hai-Tao Hu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy & Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China.,Department of Microbiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
9
|
Davies K, Afrough B, Mankouri J, Hewson R, Edwards TA, Barr JN. Tula orthohantavirus nucleocapsid protein is cleaved in infected cells and may sequester activated caspase-3 during persistent infection to suppress apoptosis. J Gen Virol 2019; 100:1208-1221. [PMID: 31268416 DOI: 10.1099/jgv.0.001291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The family Hantaviridae mostly comprises rodent-borne segmented negative-sense RNA viruses, many of which are capable of causing devastating disease in humans. In contrast, hantavirus infection of rodent hosts results in a persistent and inapparent infection through their ability to evade immune detection and inhibit apoptosis. In this study, we used Tula hantavirus (TULV) to investigate the interplay between viral and host apoptotic responses during early, peak and persistent phases of virus infection in cell culture. Examination of early-phase TULV infection revealed that infected cells were refractory to apoptosis, as evidenced by the complete lack of cleaved caspase-3 (casp-3C) staining, whereas in non-infected bystander cells casp-3C was highly abundant. Interestingly, at later time points, casp-3C was abundant in infected cells, but the cells remained viable and able to continue shedding infectious virus, and together these observations were suggestive of a TULV-associated apoptotic block. To investigate this block, we viewed TULV-infected cells using laser scanning confocal and wide-field deconvolution microscopy, which revealed that TULV nucleocapsid protein (NP) colocalized with, and sequestered, casp-3C within cytoplasmic ultrastructures. Consistent with casp-3C colocalization, we showed for the first time that TULV NP was cleaved in cells and that TULV NP and casp-3C could be co-immunoprecipitated, suggesting that this interaction was stable and thus unlikely to be solely confined to NP binding as a substrate to the casp-3C active site. To account for these findings, we propose a novel mechanism by which TULV NP inhibits apoptosis by spatially sequestering casp-3C from its downstream apoptotic targets within the cytosol.
Collapse
Affiliation(s)
- Katherine Davies
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Babak Afrough
- National Infection Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Reuter M, Krüger DH. The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein. Virus Genes 2017; 54:5-16. [PMID: 29159494 DOI: 10.1007/s11262-017-1522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
The nucleocapsid (N) protein of hantaviruses represents an impressive example of a viral multifunctional protein. It encompasses properties as diverse as genome packaging, RNA chaperoning, intracellular protein transport, DNA degradation, intervention in host translation, and restricting host immune responses. These functions all rely on the capability of N to interact with RNA and other viral and cellular proteins. We have compiled data on the N protein of different hantavirus species together with information of the recently published three-dimensional structural data of the protein. The array of diverse functional activities accommodated in the hantaviral N protein goes far beyond to be a static structural protein and makes it an interesting target in the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Meyer B, Groseth A. Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes Infect 2017; 20:65-80. [PMID: 29081359 DOI: 10.1016/j.micinf.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
In recent years there has been a greatly increased interest in the interactions of arenaviruses with the apoptotic machinery, and particularly the extent to which these interactions may be an important contributor to pathogenesis. Here we summarize the current state of our knowledge on this subject and address the potential for interplay with other immunological mechanisms known to be regulated by these viruses. We also compare and contrast what is known for arenavirus-induced apoptosis with observations from other segmented hemorrhagic fever viruses.
Collapse
Affiliation(s)
- Bjoern Meyer
- Viral Populations and Pathogenesis Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Allison Groseth
- Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
12
|
Chang CF, Ke CY, Wu YC, Chuang TH. Structure-Activity Relationship of Synthetic 2-Phenylnaphthalenes with Hydroxyl Groups that Inhibit Proliferation and Induce Apoptosis of MCF-7 Cancer Cells. PLoS One 2015; 10:e0141184. [PMID: 26492346 PMCID: PMC4619615 DOI: 10.1371/journal.pone.0141184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
In this study, six 2-phenylnaphthalenes with hydroxyl groups were synthesized in high yields by the demethylation of the corresponding methoxy-2-phenylnaphthalenes, and one 2-phenylnaphthalene with an amino group was obtained by hydrogenation. All of the 2-phenylnaphthalene derivatives were evaluated for cytotoxicity, and the structure-activity relationship (SAR) against human breast cancer (MCF-7) cells was also determined. The SAR results revealed that cytotoxicity was markedly promoted by the hydroxyl group at the C-7 position of the naphthalene ring. The introduction of hydroxyl groups at the C-6 position of the naphthalene ring and the C-4' position of the phenyl ring fairly enhanced cytotoxicity, but the introduction of a hydroxyl group at the C-3' position of the phenyl ring slightly decreased cytotoxicity. Overall, 6,7-dihydroxy-2-(4'-hydroxyphenyl)naphthalene (PNAP-6h) exhibited the best cytotoxicity, with an IC50 value of 4.8 μM against the MCF-7 cell line, and showed low toxicity toward normal human mammary epithelial cells (MCF-10A). PNAP-6h led to cell arrest at the S phase, most likely due to increasing levels of p21 and p27 and decreasing levels of cyclin D1, CDK4, cyclin E, and CDK2. In addition, PNAP-6h decreased CDK1 and cyclin B1 expression, most likely leading to G2/M arrest, and induced morphological changes, such as nuclear shrinkage, nuclear fragmentation, and nuclear hypercondensation, as observed by Hoechst 33342 staining. PNAP-6h induced apoptosis, most likely by the promotion of Fas expression, increased PARP activity, caspase-7, caspase-8, and caspase-9 expression, the Bax/Bcl-2 ratio, and the phosphorylation of p38, and decreased the phosphorylation of ERK. This study provides the first demonstration of the cytotoxicity of PNAPs against MCF-7 cells and elucidates the mechanism underlying PNAP-induced cytotoxicity.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (CFC); (THC)
| | - Ci-Yi Ke
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (CFC); (THC)
| |
Collapse
|
13
|
Pan W, Bian G, Wang K, Feng T, Dai J. Effects of Different Doses of Nucleocapsid Protein from Hantaan Virus A9 Strain on Regulation of Interferon Signaling. Viral Immunol 2015; 28:448-54. [PMID: 26196448 PMCID: PMC4599133 DOI: 10.1089/vim.2015.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hantaan virus A9 strain (HTNV A9) is an etiologic agent of hemorrhagic fever with renal syndrome in China. The virulence of the pathogenic hantaviruses is determined by their ability to alter key signaling pathways of early interferon (IFN) induction within cells. The potential role of HTNV A9 structural proteins, such as nucleocapsid (N) and envelope glycoproteins (Gn and Gc), in regulating human's innate antiviral immune response has not yet been clarified. In this study, we investigated the effect of HTNV A9 N protein on the regulation of the IFN pathway. We found that A9 N protein can influence the host innate immune response by regulating the activation of IFNβ. The A9 N protein stimulates IFN response in low doses, whereas significantly inhibits IFNβ production at high doses. Furthermore, A9 N protein constitutively inhibits nuclear factor kappa B activation. A high dose of A9 N protein could inhibit either Poly IC-induced IFNβ or vesicular stomatitis virus-induced IFNβ and interferon-stimulated gene production. Our results indicate that HTNV A9 N protein helps virus establish successful infection by downregulating the IFN response and shed new light to the understanding of the interaction between the host innate immunity and virus during Hantaan virus infection.
Collapse
Affiliation(s)
- Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Gang Bian
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Kezhen Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| |
Collapse
|
14
|
Schönrich G, Krüger DH, Raftery MJ. Hantavirus-induced disruption of the endothelial barrier: neutrophils are on the payroll. Front Microbiol 2015; 6:222. [PMID: 25859243 PMCID: PMC4373389 DOI: 10.3389/fmicb.2015.00222] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Viral hemorrhagic fever caused by hantaviruses is an emerging infectious disease for which suitable treatments are not available. In order to improve this situation a better understanding of hantaviral pathogenesis is urgently required. Hantaviruses infect endothelial cell layers in vitro without causing any cytopathogenic effect and without increasing permeability. This implies that the mechanisms underlying vascular hyperpermeability in hantavirus-associated disease are more complex and that immune mechanisms play an important role. In this review we highlight the latest developments in hantavirus-induced immunopathogenesis. A possible contribution of neutrophils has been neglected so far. For this reason, we place special emphasis on the pathogenic role of neutrophils in disrupting the endothelial barrier.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Detlev H Krüger
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
15
|
Karlberg H, Tan YJ, Mirazimi A. Crimean-Congo haemorrhagic fever replication interplays with regulation mechanisms of apoptosis. J Gen Virol 2014; 96:538-546. [PMID: 25481756 DOI: 10.1099/jgv.0.000011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis of viral haemorrhagic fevers is associated with alteration of vascular barrier function and haemorrhage. To date, the specific mechanism behind this is unknown. Programmed cell death and regulation of apoptosis in response to viral infection is an important factor for host or virus survival but this has not been well-studied in the case of Crimean-Congo hemorrhagic fever virus (CCHFV). In this study, we demonstrated that CCHFV infection suppresses cleavage of poly(ADP-ribose) polymerase (PARP), triggered by staurosporine early post-infection. We also demonstrated that CCHFV infection suppresses activation of caspase-3 and caspase-9. Most interestingly, we found that CCHFV N can suppress induction of apoptosis by Bax and inhibit the release of cytochrome c from the inner membrane of mitochondria to cytosol. However, CCHFV infection induces activation of Bid late post-infection, suggesting activation of extrinsic apoptotic signalling. Consistently, supernatant from cells stimulated late post-infection was found to induce PARP cleavage, most probably through the TNF-α death receptor pathway. In summary, we found that CCHFV has strategies to interplay with apoptosis pathways and thereby regulate caspase cascades. We suggest that CCHFV suppresses caspase activation at early stages of the CCHFV replication cycle, which perhaps benefits the establishment of infection. Furthermore, we suggest that the host cellular response at late stages post-infection induces host cellular pro-apoptotic molecules through the death receptor pathway.
Collapse
Affiliation(s)
- Helen Karlberg
- Karolinska Institute, Stockholm SE-171 77, Sweden.,Public Health Agency of Sweden, SE-171 82, Sweden
| | - Yee-Joo Tan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Ali Mirazimi
- National Veterinary Institute, Uppsala SE-756 51, Sweden.,Karolinska Institute, Stockholm SE-171 77, Sweden.,Public Health Agency of Sweden, SE-171 82, Sweden
| |
Collapse
|
16
|
Hantavirus immunology of rodent reservoirs: current status and future directions. Viruses 2014; 6:1317-35. [PMID: 24638205 PMCID: PMC3970152 DOI: 10.3390/v6031317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses are hosted by rodents, insectivores and bats. Several rodent-borne hantaviruses cause two diseases that share many features in humans, hemorrhagic fever with renal syndrome in Eurasia or hantavirus cardiopulmonary syndrome in the Americas. It is thought that the immune response plays a significant contributory role in these diseases. However, in reservoir hosts that have been closely examined, little or no pathology occurs and infection is persistent despite evidence of adaptive immune responses. Because most hantavirus reservoirs are not model organisms, it is difficult to conduct meaningful experiments that might shed light on how the viruses evade sterilizing immune responses and why immunopathology does not occur. Despite these limitations, recent advances in instrumentation and bioinformatics will have a dramatic impact on understanding reservoir host responses to hantaviruses by employing a systems biology approach to identify important pathways that mediate virus/reservoir relationships.
Collapse
|
17
|
An innate immunity-regulating virulence determinant is uniquely encoded by the Andes virus nucleocapsid protein. mBio 2014; 5:mBio.01088-13. [PMID: 24549848 PMCID: PMC3944819 DOI: 10.1128/mbio.01088-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Andes virus (ANDV) is the only hantavirus known to spread from person to person and shown to cause highly lethal hantavirus pulmonary syndrome (HPS) in patients and Syrian hamsters. Hantaviruses replicate in human endothelial cells and accomplish this by restricting the early induction of beta interferon (IFN-β)- and IFN-stimulated genes (ISGs). Our studies reveal that the ANDV nucleocapsid (N) protein uniquely inhibits IFN signaling responses directed by cytoplasmic double-stranded RNA (dsRNA) sensors RIG-I and MDA5. In contrast, N proteins from Sin Nombre, New York-1, and Prospect Hill hantaviruses had no effect on RIG-I/MDA5-directed transcriptional responses from IFN-β-, IFN-stimulated response element (ISRE)-, or κB-containing promoters. Ablating a potential S-segment nonstructural open reading frame (ORF) (NSs) within the ANDV plasmid expressing N protein failed to alter IFN regulation by ANDV N protein. Further analysis demonstrated that expressing the ANDV N protein inhibited downstream IFN pathway activation directed by MAVS, TBK1, and IκB kinase ε (IKKε) but failed to inhibit transcriptional responses directed by constitutive expression of active interferon regulatory factor IRF3-5D or after stimulation by alpha interferon (IFN-α) or tumor necrosis factor alpha (TNF-α). Consistent with IFN pathway-specific regulation, the ANDV N protein inhibited TBK1-directed IRF3 phosphorylation (phosphorylation of serine 396 [pS396]) and TBK1 autophosphorylation (pS172). Collectively, these findings indicate that the ANDV N inhibits IFN signaling responses by interfering with TBK1 activation, upstream of IRF3 phosphorylation and NF-κB activation. Moreover, our findings reveal that ANDV uniquely carries a gene encoding a virulence determinant within its N protein that is capable of restricting ISG and IFN-β induction and provide a rationale for the novel pathogenesis and spread of ANDV. Andes virus (ANDV) is distinguished from other hantaviruses by its unique ability to spread from person to person and cause lethal hantavirus pulmonary syndrome (HPS)-like disease in Syrian hamsters. However, virulence determinants that distinguish ANDV from other pathogenic hantaviruses have yet to be defined. Here we reveal that ANDV uniquely contains a virulence determinant within its nucleocapsid (N) protein that potently inhibits innate cellular signaling pathways. This novel function of the N protein provides a new mechanism for hantaviruses to regulate interferon (IFN) and IFN-stimulated gene (ISG) induction that is likely to contribute to the enhanced ability of ANDV to replicate, spread, and cause disease. These findings differentiate ANDV from other HPS-causing hantaviruses and provide a potential target for viral attenuation that needs to be considered in vaccine development.
Collapse
|
18
|
Abstract
ABSTRACT: Hantaviruses productively infect endothelial cells in their rodent reservoirs and humans, but the infection only causes disease in humans – hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. Despite the enormous progress that has been made in understanding the pathogenesis and immune responses of hantavirus infection, there is a large gap in our molecular-based knowledge of hantaviral proteins in their structures, functions and the mechanisms that facilitate their entry, replication and assembly. Importantly, we know little about the specific viral determinants and viral protein–host interactions that drive differences noted in immune responses between the reservoir and humans. This review discusses our current understanding and future work needed for unraveling the biology of these viruses in their reservoirs and in humans.
Collapse
Affiliation(s)
- Ryan C McAllister
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
| | - Colleen B Jonsson
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
- Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
- Departments of Microbiology & Immunology & Pharmacology & Toxicology, Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, University of Louisville, Clinical & Translational Research Building, 505 South Hancock Avenue, Louisville, KY 40202, USA
| |
Collapse
|
19
|
Park SW, Han MG, Park C, Ju YR, Ahn BY, Ryou J. Hantaan virus nucleocapsid protein stimulates MDM2-dependent p53 degradation. J Gen Virol 2013; 94:2424-2428. [PMID: 23994832 DOI: 10.1099/vir.0.054312-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Apoptosis has been shown to be induced and downregulated by the Hantaan virus (HTNV) nucleocapsid (N) protein. To address these conflicting data, expression of the p53 protein, one of the key molecules involved in apoptosis, was assessed in the presence of the N protein in A549 and HeLa cells. The amount of p53, increased by drug treatment, was reduced when cells were infected with HTNV or transfected with an expression vector of the HTNV N protein. When cells were treated with a proteasome inhibitor (MG132) or an MDM2 antagonist (Nutlin-3), p53 expression was not reduced in N protein-overexpressed cells. We concluded that the HTNV N protein ubiquitinates and degrades p53 MDM2-dependently. Here we report downregulation of p53 expression through a post-translational mechanism: MDM2-dependent ubiquitination and degradation by the HTNV N protein. These results indicate that N protein-dependent p53 degradation through the ubiquitin proteasome system is one of the anti-apoptotic mechanisms employed by HTNV.
Collapse
Affiliation(s)
- Sun-Whan Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
- Division of Arboviruses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Republic of Korea
| | - Myung-Guk Han
- Division of Arboviruses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Republic of Korea
| | - Chan Park
- Division of Arboviruses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Republic of Korea
| | - Young Ran Ju
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Republic of Korea
| | - Byung-Yoon Ahn
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jungsang Ryou
- Division of Arboviruses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Republic of Korea
| |
Collapse
|
20
|
The murine model for Hantaan virus-induced lethal disease shows two distinct paths in viral evolutionary trajectory with and without ribavirin treatment. J Virol 2013; 87:10997-1007. [PMID: 23903835 DOI: 10.1128/jvi.01394-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice. In untreated, HTNV-infected mice, the vRNA copy number increased for 10 days postinfection (dpi) and thereafter remained constant through 26 dpi. Surprisingly, in ribavirin-treated, HTNV-infected mice, vRNA levels were similar to those in untreated mice between 10 and 26 dpi. Infectious virus levels, however, were different: in ribavirin-treated mice, the amount of infectious HTNV was significantly decreased relative to that in untreated mice, suggesting that ribavirin reduced the specific infectivity of the virus (amount of infectious virus produced per vRNA copy). Mutational analysis revealed a ribavirin-associated elevation in mutation frequency in HTNV vRNA similar to that previously reported in vitro. Codon-based analyses of rates of nonsynonymous (dN) and synonymous (dS) substitutions in the S segment revealed a positive selection for codons within the HTNV N protein gene in the ribavirin-treated vRNA population. In contrast, the vRNA population in untreated, HTNV-infected mice showed a lower level of diversity, reflecting purifying selection for the wild-type genome. In summary, these experiments show two different evolutionary paths that Hantavirus may take during infection in a lethal murine model of disease, as well as the importance of the in vivo host environment in the evolution of the virus, which was not apparent in our prior in vitro model system.
Collapse
|
21
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
22
|
Kyriakidis I, Papa A. Serum TNF-α, sTNFR1, IL-6, IL-8 and IL-10 levels in hemorrhagic fever with renal syndrome. Virus Res 2013; 175:91-4. [PMID: 23603136 DOI: 10.1016/j.virusres.2013.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/23/2013] [Accepted: 03/23/2013] [Indexed: 12/25/2022]
Abstract
It is generally accepted that the pathogenesis of hantavirus infections is the result of virus-mediated host immune response. Hantaviruses, and mainly Dobrava-Belgrade virus, are present in Greece, and cause to humans hemorrhagic fever with renal syndrome (HFRS). Serum IL-6, IL-8, IL-10, TNF-α and sTNFR1 levels were measured in 29 HFRS Greek patients. Significant higher sTNFR1, IL-6, IL-8 and IL-10 levels were observed in severe than in mild/moderate cases, while TNF-α did not seem to be associated with disease severity. Correlations between cytokine levels and their fluctuation over time after onset of the illness, along with comparisons from previously published data on the field, led in building an immune response pattern for HFRS.
Collapse
Affiliation(s)
- Ioannis Kyriakidis
- 1st Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
23
|
Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol 2012; 86:10914-23. [PMID: 22875964 DOI: 10.1128/jvi.01555-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus of the Bunyaviridae family that is responsible for a fatal human disease for which preventative or therapeutic measures do not exist. We solved the crystal structure of the CCHFV strain Baghdad-12 nucleocapsid protein (N), a potential therapeutic target, at a resolution of 2.1 Å. N comprises a large globular domain composed of both N- and C-terminal sequences, likely involved in RNA binding, and a protruding arm domain with a conserved DEVD caspase-3 cleavage site at its apex. Alignment of our structure with that of the recently reported N protein from strain YL04057 shows a close correspondence of all folds but significant transposition of the arm through a rotation of 180 degrees and a translation of 40 Å. These observations suggest a structural flexibility that may provide the basis for switching between alternative N protein conformations during important functions such as RNA binding and oligomerization. Our structure reveals surfaces likely involved in RNA binding and oligomerization, and functionally critical residues within these domains were identified using a minigenome system able to recapitulate CCHFV-specific RNA synthesis in cells. Caspase-3 cleaves the polypeptide chain at the exposed DEVD motif; however, the cleaved N protein remains an intact unit, likely due to the intimate association of N- and C-terminal fragments in the globular domain. Structural alignment with existing N proteins reveals that the closest CCHFV relative is not another bunyavirus but the arenavirus Lassa virus instead, suggesting that current segmented negative-strand RNA virus taxonomy may need revision.
Collapse
|
24
|
Abstract
Hantavirus pulmonary syndrome caused by hantaviruses in the Americas presents as a broad clinical spectrum ranging from brief febrile prodrome with only thrombocytopenia to rapidly progressive fulminant pulmonary edema and shock. This vascular leak syndrome confined almost exclusively to the lung is initiated by the noncytolytic infection of capillary endothelial cells. A number of pathogenic mechanisms have been proposed, including immune cell-mediated injury, cytokine-mediated injury and enhanced VEGF responses from intercellular junctions resulting from highly specific virus–integrin interactions. This review examines evidence for each of these potential mechanisms, with relevant references to its sister syndrome, hemorrhagic fever with renal syndrome, in Eurasia. Any mechanism or combination of mechanisms must be able to explain the massive pulmonary capillary leak at the severe extreme of the spectrum, a disease manifestation without parallel in clinical medicine.
Collapse
Affiliation(s)
- Frederick Koster
- Division of Applied Science, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Erich Mackow
- Department Molecular Genetics & Microbiology, Molecular & Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
25
|
Bhat AS, Savithri HS. Investigations on the RNA binding and phosphorylation of groundnut bud necrosis virus nucleocapsid protein. Arch Virol 2011; 156:2163-72. [PMID: 21947504 PMCID: PMC7086702 DOI: 10.1007/s00705-011-1110-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 09/06/2011] [Indexed: 11/27/2022]
Abstract
Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.
Collapse
Affiliation(s)
- Amruta S Bhat
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka State, India
| | | |
Collapse
|
26
|
Lee MH, Lalwani P, Raftery MJ, Matthaei M, Lütteke N, Kirsanovs S, Binder M, Ulrich RG, Giese T, Wolff T, Krüger DH, Schönrich G. RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. J Gen Virol 2011; 92:2191-2200. [PMID: 21632559 DOI: 10.1099/vir.0.032367-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock-down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2',5'-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that in vitro-transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.
Collapse
Affiliation(s)
- Min-Hi Lee
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Pritesh Lalwani
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | | | - Nina Lütteke
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Sina Kirsanovs
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Marco Binder
- Department of Molecular Virology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich Loeffler Institute, Institute for Novel and Emerging Infectious Diseases, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Detlev H Krüger
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| |
Collapse
|
27
|
Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 2011; 92:2467-2484. [PMID: 21865443 DOI: 10.1099/vir.0.035105-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.
Collapse
Affiliation(s)
- Cheryl T Walter
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John N Barr
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
28
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
29
|
The C-terminal 42 residues of the Tula virus Gn protein regulate interferon induction. J Virol 2011; 85:4752-60. [PMID: 21367904 DOI: 10.1128/jvi.01945-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hantaviruses primarily infect the endothelial cell lining of capillaries and cause two vascular permeability-based diseases. The ability of pathogenic hantaviruses to regulate the early induction of interferon determines whether hantaviruses replicate in endothelial cells. Tula virus (TULV) and Prospect Hill virus (PHV) are hantaviruses which infect human endothelial cells but fail to cause human disease. PHV is unable to inhibit early interferon (IFN) responses and fails to replicate within human endothelial cells. However, TULV replicates successfully in human endothelial cells, suggesting that TULV is capable of regulating cellular IFN responses. We observed a >300-fold reduction in the IFN-stimulated genes (ISGs) MxA and ISG56 following TULV versus PHV infection of endothelial cells 1 day postinfection. Similar to results with pathogenic hantaviruses, expressing the TULV Gn protein cytoplasmic tail (Gn-T) blocked RIG-I- and TBK1-directed transcription from IFN-stimulated response elements (ISREs) and IFN-β promoters (>90%) but not transcription directed by constitutively active IFN regulatory factor-3 (IRF3). In contrast, expressing the PHV Gn-T had no effect on TBK1-induced transcriptional responses. Analysis of Gn-T truncations demonstrated that the C-terminal 42 residues of the Gn-T (Gn-T-C42) from TULV, but not PHV, inhibited IFN induction >70%. These findings demonstrate that the TULV Gn-T inhibits IFN- and ISRE-directed responses upstream of IRF3 at the level of the TBK1 complex and further define a 42-residue domain of the TULV Gn-T that inhibits IFN induction. In contrast to pathogenic hantavirus Gn-Ts, the TULV Gn-T lacks a C-terminal degron domain and failed to bind tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), a TBK1 complex component required for IRF3 activation. These findings indicate that the nonpathogenic TULV Gn-T regulates IFN induction but accomplishes this via unique interactions with cellular TBK1 complexes. These findings fundamentally distinguish nonpathogenic hantaviruses, PHV and TULV, and demonstrate that IFN regulation alone is insufficient for hantaviruses to cause disease. Yet regulating the early IFN response is necessary for hantaviruses to replicate within human endothelial cells and to be pathogenic. Thus, in addition to IFN regulation, hantaviruses contain discrete virulence determinants which permit them to be human pathogens.
Collapse
|
30
|
Karlberg H, Tan YJ, Mirazimi A. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem 2010; 286:3227-34. [PMID: 21123175 DOI: 10.1074/jbc.m110.149369] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.
Collapse
Affiliation(s)
- Helen Karlberg
- Swedish Institute for Infectious Disease control, SE-171 82 Solna, Sweden
| | | | | |
Collapse
|
31
|
Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J Virol 2010; 85:1747-56. [PMID: 21106742 DOI: 10.1128/jvi.01428-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
Collapse
|
32
|
Abstract
Hantaviruses, members of the Bunyaviridae family, are emerging category A pathogens that initiate the translation of their capped mRNAs by a novel mechanism mediated by viral nucleocapsid protein (N). N specifically binds to the mRNA 5' m7G cap and 40S ribosomal subunit, a complex of 18S rRNA and multiple ribosomal proteins. Here, we show that N specifically interacts with the ribosomal protein S19 (RPS19), located at the head region of the 40S subunit. We suggest that this N-RPS19 interaction facilitates ribosome loading on capped mRNAs during N-mediated translation initiation.
Collapse
|