1
|
Hu ZG, Dong ZQ, Miao JH, Li KJ, Wang J, Chen P, Lu C, Pan MH. Identification of the Key Functional Domains of Bombyx mori Nucleopolyhedrovirus IE1 Protein. Int J Mol Sci 2022; 23:ijms231810276. [PMID: 36142194 PMCID: PMC9499007 DOI: 10.3390/ijms231810276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158–208 was a major nuclear localization element, and IE11–157 and IE1539–559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11–258, IE1560–584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Jiang-Hao Miao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ke-Jie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| |
Collapse
|
2
|
Amalfi S, Molina GN, Bevacqua RJ, López MG, Taboga O, Alfonso V. Baculovirus Transduction in Mammalian Cells Is Affected by the Production of Type I and III Interferons, Which Is Mediated Mainly by the cGAS-STING Pathway. J Virol 2020; 94:e01555-20. [PMID: 32796076 PMCID: PMC7565641 DOI: 10.1128/jvi.01555-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively. Overall, our results suggest the existence of two different pathways involved in the establishment of the antiviral response, both dependent on STING expression. Particularly, the cGAS-STING pathway resulted in the more relevant production of beta interferon (IFN-β) and IFN-λ1 in response to baculovirus infection. In human epithelial cells, IFN-λ1 production was also induced in a cGAS-independent and DNA-protein kinase (DNA-PK)-dependent manner. Finally, we demonstrated that these cellular responses toward baculovirus infection affect the efficiency of transduction of baculovirus vectors.IMPORTANCE Baculoviruses are nonpathogenic viruses that infect mammals, which, among other applications, are used as vehicles for gene delivery. Here, we demonstrated that the cytosolic DNA sensor cGAS recognizes baculoviral DNA and that the cGAS-STING axis is primarily responsible for the attenuation of transduction in human and mouse cell lines through type I and type III IFNs. Furthermore, we identified DNA-dependent protein kinase (DNA-PK) as a cGAS-independent and alternative DNA cytosolic sensor that contributes less to the antiviral state in baculovirus infection in human epithelial cells than cGAS. Knowledge of the pathways involved in the response of mammalian cells to baculovirus infection will improve the use of this vector as a tool for gene therapy.
Collapse
Affiliation(s)
- Sabrina Amalfi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Guido Nicolás Molina
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Romina Jimena Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires/INPA-CONICET, Buenos Aires, Argentina
- Seung Kim Lab, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| |
Collapse
|
3
|
Taning CNT, Christiaens O, Li X, Swevers L, Casteels H, Maes M, Smagghe G. Engineered Flock House Virus for Targeted Gene Suppression Through RNAi in Fruit Flies ( Drosophila melanogaster) in Vitro and in Vivo. Front Physiol 2018; 9:805. [PMID: 30018564 PMCID: PMC6037854 DOI: 10.3389/fphys.2018.00805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool to study functional genomics in insects and the potential of using RNAi to suppress crop pests has made outstanding progress. However, the delivery of dsRNA is a challenging step in the development of RNAi bioassays. In this study, we investigated the ability of engineered Flock House virus (FHV) to induce targeted gene suppression through RNAi under in vitro and in vivo condition. As proxy for fruit flies of agricultural importance, we worked with S2 cells as derived from Drosophila melanogaster embryos, and with adult stages of D. melanogaster. We found that the expression level for all of the targeted genes were reduced by more than 70% in both the in vitro and in vivo bioassays. Furthermore, the cell viability and median survival time bioassays demonstrated that the recombinant FHV expressing target gene sequences caused a significantly higher mortality (60–73% and 100%) than the wild type virus (24 and 71%), in both S2 cells and adult insects, respectively. This is the first report showing that a single stranded RNA insect virus such as FHV, can be engineered as an effective in vitro and in vivo RNAi delivery system. Since FHV infects many insect species, the described method could be exploited to improve the efficiency of dsRNA delivery for RNAi-related studies in both FHV susceptible insect cell lines and live insects that are recalcitrant to the uptake of naked dsRNA.
Collapse
Affiliation(s)
- Clauvis N T Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - XiuXia Li
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Entomology, China Agricultural University, Beijing, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Hans Casteels
- Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Martine Maes
- Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
5
|
Ioannidis K, Swevers L, Iatrou K. Bombyx mori nucleopolyhedrovirus lef8 gene: effects of deletion and implications for gene transduction applications. J Gen Virol 2015; 97:786-796. [PMID: 26701681 DOI: 10.1099/jgv.0.000383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we have deleted the lef8 gene of the baculovirus BmNPV, which encodes one of the viral RNA polymerase subunits, in order to create a knockout bacmid, Δlef8, directing cytopathology-free single-cell infections for gene transduction and recombinant protein production. However, while removal of the complete lef8 ORF produced the expected phenotype, it also affected the function of the closely linked essential gene orf40, thus hampering the mutant bacmid rescue in cultured Bombyx cells expressing recombinant LEF8. Subsequently, we determined that several diverse sequences can substitute for the orf40 5'-upstream sequences that were removed by the deletion of the lef8 gene and also showed that neither a physical linkage nor expression of the two relevant genes under native promoter control is a prerequisite for a fully functional virus. Based on these findings, we generated a rescue-competent lef8-null vector, which contained a heterologous promoter-driven orf40. This lef8-deficient vector, which produces productive infections and progeny virus lacking lef8 in deficiency-complementing cells expressing LEF8, could be used as the basis for an alternative to current silkmoth transduction systems.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| |
Collapse
|
6
|
Gandhi KM, Ohkawa T, Welch MD, Volkman LE. Nuclear localization of actin requires AC102 in Autographa californica multiple nucleopolyhedrovirus-infected cells. J Gen Virol 2012; 93:1795-1803. [PMID: 22592260 DOI: 10.1099/vir.0.041848-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus requires nuclear actin for progeny virus production and thereby encodes viral products that ensure actin's translocation to and retention within the nucleus. Current evidence suggests that the ie0-ie1 gene complex along with five nuclear localization of actin (NLA) genes are sufficient for NLA in transient transfection experiments. Here we report that, during infection, only one of the five NLA genes, Ac102, was essential for NLA, and that AC102 had at least one other activity critical for budded virus (BV) production. Viral deletion mutants in the other four NLA genes were viable, with only two having replication phenotypes different from that of the wild type. Infection with AcΔpe38 revealed a delay in both BV production and NLA. Infection with AcΔ152 revealed a delay in BV production, but no corresponding delay in NLA. Infection with either AcΔpe38 or AcΔ152 resulted in slightly reduced BV titres. Deletion of Ac004 or he65 had no impact on actin translocation kinetics, timing of BV production or BV titres. These results implicate AC102 as a key player in baculovirus manipulation of actin.
Collapse
Affiliation(s)
- Kamal M Gandhi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Taro Ohkawa
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Loy E Volkman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
7
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|