1
|
SYNJ2BP Improves the Production of Lentiviral Envelope Protein by Facilitating the Formation of Mitochondrion-Associated Endoplasmic Reticulum Membrane. J Virol 2022; 96:e0054922. [PMID: 36197105 PMCID: PMC9599250 DOI: 10.1128/jvi.00549-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) and HIV are both members of the Lentivirus genus and are similar in major virological characters. EIAV endangers the horse industry. In addition, EIAV can also be used as a model for HIV research. The maturation of the lentiviral Env protein, which is necessary for viral entry, requires Env to be folded in the endoplasmic reticulum (ER). It is currently unclear how this process is regulated. Mitochondrion-associated endoplasmic reticulum membrane (MAM) is a specialized part of the close connection between the ER and mitochondria, and one of the main functions of MAM is to promote oxidative protein production in the ER. SYNJ2BP is one of the key proteins that make up the MAM, and we found that SYNJ2BP is essential for EIAV replication. We therefore constructed a SYNJ2BP knockout HEK293T cell line in which the number of MAMs is significantly reduced. Moreover, overexpression of SYNJ2BP could increase the number of MAMs. Our study demonstrates that SYNJ2BP can improve the infectivity of the EIAV virus with elevated production of the viral Env protein through increased MAM formation. Interestingly, SYNJ2BP was able to improve the production of not only EIAV Env but also HIV. Further investigation showed that MAMs can provide more ATP and calcium ions, which are essential factors for Env production, to the ER and can also reduce ER stress induced by HIV or EIAV Envs to increase the Env production level in cells. These results may help us to understand the key production mechanisms of lentiviral Env. IMPORTANCE Lentiviral Env proteins, which are rich in disulfide bonds, need to be fully folded in the ER; otherwise, misfolded Env proteins will induce ER stress and be degraded by ER-associated protein degradation (ERAD). To date, it is still unclear about Env production mechanism in the ER. MAM is the structure of closely connection between the ER and mitochondria. MAMs play important roles in the calcium steady state and oxidative stress, especially in the production of oxidative protein. For the first time, we found that SYNJ2BP can promote the production of lentiviral Env proteins by providing the ATP and calcium ions required for oxidative protein production in the ER and by reducing ER stress through facilitating formation of MAMs. These studies shed light on how MAMs improve lentiviral Env production, which will lay the foundation for the study of replication mechanisms in other lentiviruses from the perspective of the cellular organelle microenvironment.
Collapse
|
2
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
3
|
Bai B, Wang XF, Zhang M, Na L, Zhang X, Zhang H, Yang Z, Wang X. The N-glycosylation of Equine Tetherin Affects Antiviral Activity by Regulating Its Subcellular Localization. Viruses 2020; 12:v12020220. [PMID: 32079099 PMCID: PMC7077275 DOI: 10.3390/v12020220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
Tetherin is an interferon-inducible type II transmembrane glycoprotein which inhibits the release of viruses, including retroviruses, through a “physical tethering” model. However, the role that the glycosylation of tetherin plays in its antiviral activity remains controversial. In this study, we found that mutation of N-glycosylation sites resulted in an attenuation of the antiviral activity of equine tetherin (eqTHN), as well as a reduction in the expression of eqTHN at the plasma membrane (PM). In addition, eqTHN N-glycosylation mutants colocalize obviously with ER, CD63, LAMP1 and endosomes, while WT eqTHN do not. Furthermore, we also found that N-glycosylation impacts the transport of eqTHN in the cell not by affecting the endocytosis, but rather by influencing the anterograde trafficking of the protein. These results suggest that the N-glycosylation of eqTHN is important for the antiviral activity of the protein through regulating its normal subcellular localization. This finding will enhance our understanding of the function of this important restriction factor.
Collapse
Affiliation(s)
- Bowen Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Mengmeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xiangmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Haili Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Correspondence: ; Tel.: +86-451-5105-1749
| |
Collapse
|
4
|
Characterization of EIAV env Quasispecies during Long-Term Passage In Vitro: Gradual Loss of Pathogenicity. Viruses 2019; 11:v11040380. [PMID: 31022927 PMCID: PMC6520696 DOI: 10.3390/v11040380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 01/12/2023] Open
Abstract
As the only widely used live lentiviral vaccine, the equine infectious anima virus (EIAV) attenuated vaccine was developed by in vitro passaging of a virulent strain for 121 generations. In our previous study, we observed that the attenuated vaccine was gradually selected under increased environmental pressure at the population level (termed a quasispecies). To further elucidate the potential correlation between viral quasispecies evolution and pathogenesis, a systematic study was performed by sequencing env using several methods. Some key mutations were identified within Env, and we observed that increased percentages of these mutations were accompanied by an increased passage number and attenuated virulence. Phylogenetic analysis revealed that env mutations related to the loss of virulence might have occurred evolutionarily. Among these mutations, deletion of amino acid 236 in the V4 region of Env resulted in the loss of one N-glycosylation site that was crucial for virulence. Notably, the 236-deleted sequence represented a "vaccine-specific" mutation that was also found in wild EIAVLN40 strains based on single genome amplification (SGA) analysis. Therefore, our results suggest that the EIAV attenuated vaccine may originate from a branch of quasispecies of EIAVLN40. Generally, the presented results may increase our understanding of the attenuation mechanism of the EIAV vaccine and provide more information about the evolution of other lentiviruses.
Collapse
|
5
|
Meier K, Jaguva Vasudevan AA, Zhang Z, Bähr A, Kochs G, Häussinger D, Münk C. Equine MX2 is a restriction factor of equine infectious anemia virus (EIAV). Virology 2018; 523:52-63. [PMID: 30081309 DOI: 10.1016/j.virol.2018.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023]
Abstract
Human myxovirus resistance protein B (hMXB) is a restriction factor of HIV-1 that also inhibits a variety of retroviruses. However, hMXB is not antiviral against equine infectious anemia virus (EIAV). We show here that equine MX2 (eMX2) potently restricts EIAV in vitro. Additionally, eMX2 inhibits HIV-1 and other lentiviruses, including murine leukemia virus. Previously, it was reported that hMXB repression is reduced in hMXB Δ1-25, but not in GTP-binding mutant K131A and GTP-hydrolysis mutant T151A. In contrast to this phenomenon, our study indicates that eMX2 restriction is not diminished in eMX2 Δ1-25, but is in eMX2 K127A and T147A, which correspond to hMXB K131A and T151A, respectively. Thus, eMX2 may inhibit retroviral replication by a novel mechanism that differs from that of hMXB.
Collapse
Affiliation(s)
- Kristina Meier
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ariane Bähr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Herman-Herder-Str. 1, 79104 Freiburg, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Characterization of Equine Infectious Anemia Virus Long Terminal Repeat Quasispecies In Vitro and In Vivo. J Virol 2018; 92:JVI.02150-17. [PMID: 29386282 PMCID: PMC5874411 DOI: 10.1128/jvi.02150-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022] Open
Abstract
The equine infectious anemia virus (EIAV) attenuated vaccine was developed by long-term passaging of a field-isolated virulent strain in cross-species hosts, followed by successive cultivation in cells in vitro. To explore the molecular mechanism underlying the evolution of the EIAV attenuated vaccine, a systematic study focusing on long-terminal-repeat (LTR) variation in numerous virus strains ranging from virulent EIAV to attenuated EIAV was performed over time both in vitro and in vivo. Two hypervariable regions were identified within the U3 region in the enhancer region (EHR) and the negative regulatory element (NRE) and within the R region in the transcription start site (TSS) and the Tat-activating region (TAR). Among these sites, variation in the U3 region resulted in the formation of additional transcription factor binding sites; this variation of the in vitro-adapted strains was consistent with the loss of pathogenicity. Notably, the same LTR variation pattern was observed both in vitro and in vivo. Generally, the LTR variation in both the attenuated virus and the virulent strain fluctuated over time in vivo. Interestingly, the attenuated-virus-specific LTR variation was also detected in horses infected with the virulent strain, supporting the hypothesis that the evolution of an attenuated virus might have involved branching from EIAV quasispecies. This hypothesis was verified by phylogenetic analysis. The present systematic study examining the molecular evolution of attenuated EIAV from EIAV quasispecies may provide an informative model reflecting the evolution of similar lentiviruses. IMPORTANCE The attenuated EIAV vaccine was the first lentiviral vaccine used to successfully control for equine infectious anemia in China. This vaccine provides an important reference for studying the relationship between EIAV gene variation and changes in biological characteristics. Importantly, the vaccine provides a model for the investigation of lentiviral quasispecies evolution. This study followed the “natural” development of the attenuated EIAV vaccine by use of a systematic analysis of LTR evolution in vitro and in vivo. The results revealed that the increase in LTR variation with passaging was accompanied by a decrease in virulence, which indicated that LTR variability might parallel the attenuation of virulence. Interestingly, the attenuated-virus-specific LTR variation was also detected in virulent-strain-infected horses, a finding consistent with those of previous investigations of gp90 and S2 evolution. Therefore, we present a hypothesis that the evolution of the attenuated virus may involve branching from EIAV quasispecies present in vivo.
Collapse
|
7
|
Wang HN, Rao D, Fu XQ, Hu MM, Dong JG. Equine infectious anemia virus in China. Oncotarget 2017; 9:1356-1364. [PMID: 29416700 PMCID: PMC5787444 DOI: 10.18632/oncotarget.20381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Equine infectious anemia is an equine disease caused by equine infectious anemia virus, which was first reported in 1840. Equine infectious anemia virus research in China started in the 1960s, focusing on etiology, pathology, diagnosis, and immunology. Notably, in 1978 an attenuated vaccine was successfully developed for equine infectious anemia virus, effectively preventing equine infectious anemia virus in China. This article will review equine infectious anemia virus in China, including past and recent research, and commemorate scientists who have made great contributions to equine infectious anemia virus prevention.
Collapse
Affiliation(s)
- Hua-Nan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dan Rao
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, China.,Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xian-Qiu Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming-Ming Hu
- Shanxi Provincial Animal Disease Control Center, Taiyuan, China
| | - Jian-Guo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
8
|
Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Virus Genes 2016; 52:814-822. [PMID: 27572122 DOI: 10.1007/s11262-016-1382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
The Chinese EIAV vaccine is an attenuated live virus vaccine obtained by serial passage of a virulent horse isolate (EIAVL) in donkeys (EIAVD) and, subsequently, in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAVL) with attenuated strains serially passaged in donkey MDM (EIAVDLV) and donkey dermal cells (EIAVFDDV). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAVFDDV infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAVFDDV. Results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum neutralizing antibodies that were also able to recognize parental viruses. This study indicates that these mutations played an important role in the attenuation of the EIAV vaccine strains.
Collapse
|
9
|
Ma J, Zhang Z, Yao Q, Su C, Yin X, Wang X. Regulation of Rev expression by the equine infectious anaemia virus tat-rev mRNA Kozak sequence and its potential influence on viral replication. J Gen Virol 2016; 97:2421-2426. [PMID: 27411804 DOI: 10.1099/jgv.0.000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rev, an important accessory protein of equine infectious anaemia virus (EIAV), induces the nuclear export of incompletely spliced viral mRNAs. Rev is translated from the tat-rev mRNA through leaky scanning of the tat CUG. In this study, the function of the Kozak sequence at the beginning of the rev ORF was investigated. Deletion or attenuation of the Kozak sequence resulted in expression of an N-terminal 11 aa-truncated Rev in addition to WT Rev. Truncated Rev displayed weaker promotion of Gag expression and processing than WT Rev. Furthermore, EIAV rescued from an infectious molecular clone (pEIAVUK3) with Kozak attenuation exhibited decreased viral replication in host cells in vitro. These results provide a new understanding of the relationship between EIAV Rev expression and viral replication.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Zeli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qiucheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Chao Su
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
10
|
Lin YZ, Sun LK, Zhu DT, Hu Z, Wang XF, Du C, Wang YH, Wang XJ, Zhou JH. Equine schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism. Virology 2016; 495:112-21. [PMID: 27200480 DOI: 10.1016/j.virol.2016.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/21/2022]
Abstract
Human schlafen11 is a novel restriction factor for HIV-1 based on bias regarding relative synonymous codon usage (RSCU). Here, we report the cloning of equine schlafen11 (eSLFN11) and the characteristics of its role in restricting the production of equine infectious anemia virus (EIAV), a retrovirus similar to HIV-1. Overexpression of eSLFN11 inhibited EIAV replication, whereas knockdown of endogenous eSLFN11 by siRNA enhanced the release of EIAV from its principal target cell. Notably, although eSLFN11 significantly suppressed expression of viral Gag protein and EIAV release into the culture medium, the levels of intracellular viral early gene proteins Tat and Rev and viral genomic RNA were unaffected. Coincidently, similar altered patterns of codon usage bias were observed for both the early and late genes of EIAV. Therefore, our data suggest that eSLFN11 restricts EIAV production by impairing viral mRNA translation via a mechanism that is similar to that employed by hSLFN11 for HIV-1.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Liu-Ke Sun
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Dan-Tong Zhu
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China; College of Wildlife Resources, Northeast Forestry University, Harbin, China.
| | - Zhe Hu
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Xue-Feng Wang
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Cheng Du
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Yu-Hong Wang
- Department of Geriatrics And Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiao-Jun Wang
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| | - Jian-Hua Zhou
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China.
| |
Collapse
|
11
|
Wang XF, Lin YZ, Li Q, Liu Q, Zhao WW, Du C, Chen J, Wang X, Zhou JH. Genetic Evolution during the development of an attenuated EIAV vaccine. Retrovirology 2016; 13:9. [PMID: 26842878 PMCID: PMC4738788 DOI: 10.1186/s12977-016-0240-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 08/30/2023] Open
Abstract
Background The equine infectious anemia virus (EIAV) vaccine is the only attenuated lentiviral vaccine applied on a large scale that has been shown to be effective in controlling the prevalence of EIA in China. This vaccine was developed by successive passaging of a field-isolated virulent strain in different hosts and cultivated cells. To explore the molecular basis for the phenotype alteration of this vaccine strain, we systematically analyzed its genomic evolution during vaccine development. Results Sequence analysis revealed that the genetic distance between the wild-type strain and six representative strains isolated from key development stages gradually increased with the number of passages. Env gene, but not gag and pol, showed a clear evolutionary flow similar to that of the whole genomes of different generations during the attenuation. Stable mutations were identified in multiple regions of multiple genes along with virus passaging. The adaption of the virus to the growth environment of cultured cells with accumulated genomic and genetic variations was positively correlated with the reduction in pathogenicity and rise of immunogenicity. Statistical analyses revealed significant differences in the frequency of the most stable mutations between in vivo and ex vivo-adapted strains and between virulent and attenuated strains. Conclusions These data indicate that EIAV evolution during vaccine development generated an accumulation of mutations under the selective drive force, which helps to better understand the molecular basis of lentivirus pathogenicity and immunogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0240-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qiang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Weike Biotechnology Development Company, Harbin, China.
| | - Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Pharmaceutical Group Biovaccine Co., Harbin, 150069, China.
| |
Collapse
|
12
|
Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles. J Virol 2015; 90:1824-38. [PMID: 26637458 DOI: 10.1128/jvi.02814-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gag intracellular assembly and export are very important processes for lentiviruses replication. Previous studies have demonstrated that equine infectious anemia virus (EIAV) matrix (MA) possesses distinct phosphoinositide affinity compared with HIV-1 MA and that phosphoinositide-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release. In this study, we compared the cellular assembly sites of EIAV and HIV-1. We observed that the assembly of EIAV particles occurred on interior cellular membranes, while HIV-1 was targeted to the plasma membrane (PM) for assembly. Then, we determined that W7 and K9 in the EIAV MA N terminus were essential for Gag assembly and release but did not affect the cellular distribution of Gag. The replacement of EIAV MA with HIV-1 MA directed chimeric Gag to the PM but severely impaired Gag release. MA structural analysis indicated that the EIAV and HIV-1 MAs had similar spatial structures but that helix 1 of the EIAV MA was closer to loop 2. Further investigation indicated that EIAV Gag accumulated in the trans-Golgi network (TGN) but not the early and late endosomes. The 9 N-terminal amino acids of EIAV MA harbored the signal that directed Gag to the TGN membrane system. Additionally, we demonstrated that EIAV particles were transported to the extracellular space by the cellular vesicle system. This type of EIAV export was not associated with multivesicular bodies or microtubule depolymerization but could be inhibited by the actin-depolymerizing drug cytochalasin D, suggesting that dynamic actin depolymerization may be associated with EIAV production. IMPORTANCE In previous studies, EIAV Gag was reported to localize to both the cell interior and the plasma membrane. Here, we demonstrate that EIAV likely uses the TGN as the assembly site in contrast to HIV-1, which is targeted to the PM for assembly. These distinct assembly features are determined by the MA domain. We also identified two sites in the N terminus of EIAV MA that were important for Gag assembly and release. Furthermore, the observation of EIAV transport by cellular vesicles but not by multivesicular bodies sheds light on the mechanisms underlying EIAV cellular replication.
Collapse
|
13
|
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome. Viruses 2015; 7:3241-60. [PMID: 26102582 PMCID: PMC4488736 DOI: 10.3390/v7062769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.
Collapse
|
14
|
Du C, Ma J, Liu Q, Li YF, He XJ, Lin YZ, Wang XF, Meng QW, Wang X, Zhou JH. Mice transgenic for equine cyclin T1 and ELR1 are susceptible to equine infectious anemia virus infection. Retrovirology 2015; 12:36. [PMID: 25928027 PMCID: PMC4422544 DOI: 10.1186/s12977-015-0163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND As a member of the tumor necrosis factor receptor (TNFR) protein superfamily, equine lentivirus receptor 1 (ELR1) has been shown to be expressed in various equine cells that are permissive for equine infectious anemia virus (EIAV) replication. The EIAV Tat protein (eTat) activates transcription initiated at the viral long terminal repeat (LTR) promoter through a unique mechanism that requires the recruitment of the equine cyclin T1 (eCT1) cofactor into the viral TAR RNA target element. In vitro studies have demonstrated that mouse fibroblast cell lines (e.g., NIH 3T3 cells) that express the EIAV receptor ELR1 and eCT1 support the productive replication of EIAV. Therefore, we constructed transgenic eCT1- and ELR1-expressing mice to examine whether they support in vivo EIAV replication. FINDINGS For the first time, we constructed mice transgenic for ELR1 and eCT1. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis confirmed that ELR1 and eCT1 were expressed in the transgenic mouse tissues, particularly in the intestines, spleen and lymph nodes. Consistent with the results of EIAV infection in NIH 3T3 cells expressing ELR1 and eCT1, mouse embryonic fibroblasts (MEFs) from the transgenic mice could support EIAV replication. More importantly, this virus could infect and replicate in mouse blood monocyte-derived macrophages (mMDMs). Macrophages are the principle target cell of EIAV in its natural hosts. Furthermore, after the transgenic mice were inoculated with EIAV, the virus could be detected not only in the plasma of the circulating blood but also in multiple organs, among which, the spleen and lymph nodes were the predominant sites of EIAV replication. Finally, we found that consistent with high viral replication levels, the relevant pathological changes occurred in the spleen and lymph nodes. CONCLUSIONS Our results show that mice transgenic for ELR1 and eCT1 are susceptible to EIAV infection and replication. Further, EIAV infection can cause lesions on the spleen and lymph nodes, similar to those frequently observed in horses, the natural hosts. Therefore, ELR1 and eCT1 are essential in vivo for EIAV invasion and replication.
Collapse
Affiliation(s)
- Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150001, China.
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Yun-Fei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qing-Wen Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
15
|
Du C, Liu HF, Lin YZ, Wang XF, Ma J, Li YJ, Wang X, Zhou JH. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. Proteomics 2015; 15:1843-58. [PMID: 25684102 DOI: 10.1002/pmic.201400279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 01/18/2023]
Abstract
Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis.
Collapse
Affiliation(s)
- Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hai-Fang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yi-Jing Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Hayao Pharmaceutical Group Biovaccine Co, Harbin, P. R. China
| |
Collapse
|
16
|
Ma J, Wang SS, Lin YZ, Liu HF, Liu Q, Wei HM, Wang XF, Wang YH, Du C, Kong XG, Zhou JH, Wang X. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain. Vet Res 2014; 45:82. [PMID: 25106750 PMCID: PMC4283155 DOI: 10.1186/s13567-014-0082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/23/2014] [Indexed: 11/10/2022] Open
Abstract
The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | | |
Collapse
|
17
|
Ma J, Wang SS, Lin YZ, Liu HF, Wei HM, Du C, Wang XF, Zhou JH. An attenuated EIAV strain and its molecular clone strain differentially induce the expression of Toll-like receptors and type-I interferons in equine monocyte-derived macrophages. Vet Microbiol 2013; 166:263-9. [PMID: 23850441 DOI: 10.1016/j.vetmic.2013.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Activations of endosomal TLRs include TLR3, TLR7/8, and TLR9 stimulates the production of cytokines, such as type I interferons (IFNs), and therefore involves in virus-host interactions. In the present study, two equine anemia virus (EIAV) strains EIAVFDDV13 and EIAVFDDV3-8, which showed different induction on protective immunity, were compared regarding their ability to regulate the expression of endosomal TLRs, as well as type I IFNs, after infection of equine monocyte-derived macrophages (eMDMs). Our results showed that EIAVFDDV13 dramatically up-regulated the expression of TLR3 and IFNβ and less robustly up-regulated the expression of TRL9 and IFNα1, whereas EIAVFDDV3-8 induced significantly lower expression of type I IFN mRNA and protein and more strongly down-regulated the expression of TLR7 and TLR8. In addition, no significant differences in cell apoptosis were observed between these two strains. Given that the genomic variation of EIAVFDDV13 is considerably higher than that of molecular clone EIAVFDDV3-8, our results suggest that stronger TLR3 activation and increased INFβ production induced by the multi-species strain are associated with an effective vaccine-elicited protective immune response.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427, Maduan Street, Nangang District, Harbin 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Meng Q, Lin Y, Ma J, Ma Y, Zhao L, Li S, Yang K, Zhou J, Shen R, Zhang X, Shao Y. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine. Viral Immunol 2012; 25:477-84. [PMID: 23171359 DOI: 10.1089/vim.2012.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure.
Collapse
Affiliation(s)
- Qinglai Meng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
20
|
Lin YZ, Cao XZ, Li L, Li L, Jiang CG, Wang XF, Ma J, Zhou JH. The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages. Virus Res 2011; 160:274-82. [PMID: 21782860 DOI: 10.1016/j.virusres.2011.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/23/2011] [Accepted: 06/30/2011] [Indexed: 11/26/2022]
Abstract
The attenuated equine infectious anemia virus (EIAV) vaccine was the first attenuated lentivirus vaccine to be used in a large-scale application and has been used to successfully control the spread of equine infectious anemia (EIA) in China. To better understand the potential role of cytokines in the pathogenesis of EIAV infection and resulting immune response, we used branched DNA technology to compare the mRNA expression levels of 12 cytokines and chemokines, including IL-1α, IL-1β, IL-4, IL-10, TNF-α, IFN-γ, IP-10, IL-8, MIP-1α, MIP-1β, MCP-1, and MCP-2, in equine monocyte-derived macrophages (eMDMs) infected with the EIAV(DLV121) vaccine strain or the parental EIAV(DLV34) pathogenic strain. Infection with EIAV(DLV34) and EIAV(DLV121) both caused changes in the mRNA levels of various cytokines and chemokines in eMDMs. In the early stage of infection with EIAV(DLV34) (0-24h), the expression of the pro-inflammatory cytokines TNF-α and IL-1β were significantly up-regulated, while with EIAV(DLV121), expression of the anti-inflammatory cytokine IL-4 was markedly up-regulated. The effects on the expression of other cytokines and chemokines were similar between these two strains of virus. During the first 4 days after infection, the expression level of IL-4 in cells infected with the pathogenic strain were significantly higher than that in cells infected with the vaccine strain, but the expression of IL-1α and IL-1β induced by the vaccine strain was significantly higher than that observed with the pathogenic strain. In addition, after 4 days of infection with the pathogenic strain, the expression levels of 5 chemokines, but not IP-10, were markedly increased in eMDMs. In contrast, the vaccine strain did not up-regulate these chemokines to this level. Contrary to our expectation, induced apoptosis in eMDMs infected with the vaccine strain was significantly higher than that infected with the pathogenic strain 4 days and 6 days after infection. Together, these results contribute to a greater understanding of the pathogenesis of EIAV and of the mechanisms by which the immune response is induced after EIAV infection.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiang CG, Gao X, Ma J, Lin YZ, Wang XF, Zhao LP, Hua YP, Liu D, Zhou JH. C-terminal truncation of the transmembrane protein of an attenuated lentiviral vaccine alters its in vitro but not in vivo replication and weakens its potential pathogenicity. Virus Res 2011; 158:235-45. [PMID: 21539871 DOI: 10.1016/j.virusres.2011.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/09/2011] [Accepted: 04/14/2011] [Indexed: 01/24/2023]
Abstract
Preliminary studies revealed that the gene of the gp45 transmembrane protein (TM) of the attenuated equine infectious anemia virus (EIAV) vaccine strain EIAV(FDDV13) had a high frequency of a premature stop codon at position 261W, which generated a 154-residue truncation at the C-terminus. EIAV(FDDV-TM36), a recombinant virus with the TM truncated at the intracytoplasmic (CT) domain due to the presence of a stop codon, was constructed based on EIAV(FDDV)3-8, which is a proviral derivative of the vaccine. EIAV(FDDV-TM36) had a significantly reduced replication capability compared to EIAV(FDDV)3-8 in equine or donkey monocyte-derived macrophages and a decreased ability to induce apoptosis. However, both viruses raised a similar plasma viral load in inoculated horses and did not induce clinical symptoms of EIA. To further compare the in vivo behavior between EIAV(FDDV-TM36) and EIAV(FDDV)3-8, inoculated horses were transiently immunosuppressed with dexamethasone. While three of the four horses inoculated with EIAV(FDDV)3-8 demonstrated significant increases in viral loads after the drug treatment, none of the four horses inoculated with EIAV(FDDV-TM36) showed a statistically increased plasma viral load. Significantly increased neutralizing antibody levels were also observed in the group of horses inoculated with EIAV(FDDV)3-8, but not EIAV(FDDV-TM36), after immunosuppression. Our results indicate that although the CT truncation of TM decreased viral replication in cultivated equine and donkey macrophages, the primary target cell of EIAV, and did not influence the plasma viral load of inoculated hosts, it weakened the potential pathogenicity of the vaccine. The host immunity is presumably responsible for the equal in vivo replication levels of viruses with either the CT-truncated or prototype TM.
Collapse
Affiliation(s)
- Cheng-Gang Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang X, Wang S, Lin Y, Jiang C, Ma J, Zhao L, Lv X, Wang F, Shen R, Zhou J. Unique evolution characteristics of the envelope protein of EIAV(LN₄₀), a virulent strain of equine infectious anemia virus. Virus Genes 2011; 42:220-8. [PMID: 21369830 DOI: 10.1007/s11262-010-0563-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
Abstract
The Chinese equine infectious anemia virus (EIAV) virulent strain EIAV(LN40) is derived from a naturally occurring virus by continuously passing in horses for 16 generations. Its genome sequence is 23% different from that of the American strains or the Japanese strains, and the variation of envelope gp90 surface unit (SU) is as high as 41%. In this study, evolutions of the EIAV(LN40) gp90 gene in four infected horses were analyzed. Results showed that new quasispecies arose in the early stage of infection in all EIAV(LN40)-infected horses. These quasispecies belonged to branches different from EIAV(LN40) in a phylogenetic tree. In contrast, the gp90 sequences of viruses isolated after disease onset remained in the same phylogenetic branch as EIAV(LN40), with some having exactly the same sequences. The glycosylation sites 191NSSN and 237NNTW in the V3 and V4 region present or absent simultaneously in most of the predicted amino acid sequences. Changes in the glycosylation sites within V3, V4, and V5 regions are usually associated with the disease status. Glycosylation sites (191NSSN, 237NNTW, and 280NDTS) within these three regions were present in EIAV(LN40) and most of the quasispecies isolated after, but not before disease onset. These unique evolutionary characteristics of SU have not been reported for EIAV and other lentiviruses. Our results provide a reference for a further understanding of the mechanism underlying the persistent infection and escape from immune surveillance of EIAV.
Collapse
Affiliation(s)
- Xuefeng Wang
- Division of Large Animal Infectious Diseases, Stated key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Wang S, Lin Y, Jiang C, Ma J, Zhao L, Lv X, Wang F, Shen R, Kong X, Zhou J. Genomic comparison between attenuated Chinese equine infectious anemia virus vaccine strains and their parental virulent strains. Arch Virol 2010; 156:353-7. [PMID: 21136127 DOI: 10.1007/s00705-010-0877-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/24/2010] [Indexed: 11/27/2022]
Abstract
A lentiviral vaccine, live attenuated equine infectious anemia virus (EIAV) vaccine, was developed in the 1970s, and this has made tremendous contributions to the control of equine infectious anemia (EIA) in China. Four key virus strains were generated during the attenuation of the EIAV vaccine: the original Liao-Ning strain (EIAV(LN40)), a donkey-adapted virulent strain (EIAV(DV117)), a donkey-leukocyte-attenuated vaccine strain (EIAV(DLV121)), and a fetal donkey dermal cell (FDD)-adapted vaccine strain (EIAV(FDDV13)). In this study, we analyzed the proviral genomes of these four EIAV strains and found a series of consensus substitutions among these strains. These mutations provide useful information for understanding the genetic basis of EIAV attenuation. Our results suggest that multiple mutations in a variety of genes in our attenuated EIAV vaccines not only provide a basis for virulence attenuation and induction of protective immunity but also greatly reduce the risk of reversion to virulence.
Collapse
Affiliation(s)
- Xuefeng Wang
- Division of Large Animal Infectious Diseases, Stated key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|