1
|
Uncovering the Role of the E1 Protein in Different Stages of Human Papillomavirus 18 Genome Replication. J Virol 2020; 94:JVI.00674-20. [PMID: 32759324 DOI: 10.1128/jvi.00674-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.
Collapse
|
2
|
Giaretta A, Toffolo GM, Elston TC. Stochastic modeling of human papillomavirusearly promoter gene regulation. J Theor Biol 2020; 486:110057. [PMID: 31672406 PMCID: PMC6937396 DOI: 10.1016/j.jtbi.2019.110057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
High risk forms of human papillomaviruses (HPVs) promote cancerous lesions and are implicated in almost all cervical cancer. Of particular relevance to cancer progression is regulation of the early promoter that controls gene expression in the initial phases of infection and can eventually lead to pre-cancer progression. Our goal was to develop a stochastic model to investigate the control mechanisms that regulate gene expression from the HPV early promoter. Our model integrates modules that account for transcriptional, post-transcriptional, translational and post-translational regulation of E1 and E2 early genes to form a functioning gene regulatory network. Each module consists of a set of biochemical steps whose stochastic evolution is governed by a chemical Master Equation and can be simulated using the Gillespie algorithm. To investigate the role of noise in gene expression, we compared our stochastic simulations with solutions to ordinary differential equations for the mean behavior of the system that are valid under the conditions of large molecular abundances and quasi-equilibrium for fast reactions. The model produced results consistent with known HPV biology. Our simulation results suggest that stochasticity plays a pivotal role in determining the dynamics of HPV gene expression. In particular, the combination of positive and negative feedback regulation generates stochastic bursts of gene expression. Analysis of the model reveals that regulation at the promoter affects burst amplitude and frequency, whereas splicing is more specialized to regulate burst frequency. Our results also suggest that splicing enhancers are a significant source of stochasticity in pre-mRNA abundance and that the number of viruses infecting the host cell represents a third important source of stochasticity in gene expression.
Collapse
Affiliation(s)
- Alberto Giaretta
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, United States of America.
| |
Collapse
|
3
|
Giaretta A, Toffolo GM. Sensitivity Analysis of a Model of Human Papillomavirus Late Promoter Regulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:2913-2916. [PMID: 31946500 DOI: 10.1109/embc.2019.8856475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A mathematical model of Human Papillomavirus late promoter regulation was recently developed, able to predict the main features of HPV gene expression during cellular differentiation under productive infection. A sensitivity analysis is performed to characterize the influence of transcriptional, post-transcriptional and translational regulations on the viral species related to E1, E2, E4 and Li genes. Sensitivity analysis indicates strong influence of parameters related to transcriptional and translational regulation. It also shows a strong influence on the parameters related to post-transcriptional regulation, showing the importance of modeling splicing regulation to well describe the biology of the late promoter.
Collapse
|
4
|
Das D, Bristol ML, Smith NW, James CD, Wang X, Pichierri P, Morgan IM. Werner Helicase Control of Human Papillomavirus 16 E1-E2 DNA Replication Is Regulated by SIRT1 Deacetylation. mBio 2019; 10:e00263-19. [PMID: 30890607 PMCID: PMC6426601 DOI: 10.1128/mbio.00263-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPV) are double-stranded DNA viruses causative in a host of human diseases, including several cancers. Following infection, two viral proteins, E1 and E2, activate viral replication in association with cellular factors and stimulate the DNA damage response (DDR) during the replication process. E1-E2 uses homologous recombination (HR) to facilitate DNA replication, but an understanding of host factors involved in this process remains incomplete. Previously, we demonstrated that the class III deacetylase SIRT1, which can regulate HR, is recruited to E1-E2-replicating DNA and regulates the level of replication. Here, we demonstrate that SIRT1 promotes the fidelity of E1-E2 replication and that the absence of SIRT1 results in reduced recruitment of the DNA repair protein Werner helicase (WRN) to E1-E2-replicating DNA. CRISPR/Cas9 editing demonstrates that WRN, like SIRT1, regulates the quantity and fidelity of E1-E2 replication. This is the first report of WRN regulation of E1-E2 DNA replication, or a role for WRN in the HPV life cycle. In the absence of SIRT1 there is an increased acetylation and stability of WRN, but a reduced ability to interact with E1-E2-replicating DNA. We present a model in which E1-E2 replication turns on the DDR, stimulating SIRT1 deacetylation of WRN. This deacetylation promotes WRN interaction with E1-E2-replicating DNA to control the quantity and fidelity of replication. As well as offering a crucial insight into HPV replication control, this system offers a unique model for investigating the link between SIRT1 and WRN in controlling replication in mammalian cells.IMPORTANCE HPV16 is the major viral human carcinogen responsible for between 3 and 4% of all cancers worldwide. Following infection, this virus activates the DNA damage response (DDR) to promote its life cycle and recruits DDR proteins to its replicating DNA in order to facilitate homologous recombination during replication. This promotes the production of viable viral progeny. Our understanding of how HPV16 replication interacts with the DDR remains incomplete. Here, we demonstrate that the cellular deacetylase SIRT1, which is a part of the E1-E2 replication complex, regulates recruitment of the DNA repair protein WRN to the replicating DNA. We demonstrate that WRN regulates the level and fidelity of E1-E2 replication. Overall, the results suggest a mechanism by which SIRT1 deacetylation of WRN promotes its interaction with E1-E2-replicating DNA to control the levels and fidelity of that replication.
Collapse
Affiliation(s)
- Dipon Das
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Molly L Bristol
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Nathan W Smith
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Claire D James
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Pietro Pichierri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Iain M Morgan
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
5
|
The Deacetylase SIRT1 Regulates the Replication Properties of Human Papillomavirus 16 E1 and E2. J Virol 2017; 91:JVI.00102-17. [PMID: 28275188 DOI: 10.1128/jvi.00102-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their genomes in differentiating epithelium using the viral proteins E1 and E2 in association with host proteins. While the roles of E1 and E2 in this process are understood, the host factors involved and how they interact with and regulate E1-E2 are not. Our previous work identified the host replication and repair factor TopBP1 as an E2 partner protein essential for optimal E1-E2 replication and for the viral life cycle. The role of TopBP1 in host DNA replication is regulated by the class III deacetylase SIRT1; activation of the DNA damage response prevents SIRT1 deacetylation of TopBP1, resulting in a switch from DNA replication to repair functions for this protein and cell cycle arrest. Others have demonstrated an essential role for SIRT1 in regulation of the HPV31 life cycle; here, we report that SIRT1 can directly regulate HPV16 E1-E2-mediated DNA replication. SIRT1 is part of the E1-E2 DNA replication complex and is recruited to the viral origin of replication in an E1-E2-dependent manner. CRISPR/Cas9 was used to generate C33a clones with undetectable SIRT1 expression and lack of SIRT1 elevated E1-E2 DNA replication, in part due to increased acetylation and stabilization of the E2 protein in the absence of SIRT1. The results demonstrate that SIRT1 is a member of, and can regulate, the HPV16 replication complex. We discuss the potential role of this protein in the viral life cycle.IMPORTANCE HPV are causative agents in a number of human diseases, and currently only the symptoms of these diseases are treated. To identify novel therapeutic approaches for combating these diseases, the viral life cycle must be understood in more detail. This report demonstrates that a cellular enzyme, SIRT1, is part of the HPV16 DNA replication complex and is brought to the viral genome by the viral proteins E1 and E2. Using gene editing technology (CRISPR/Cas9), the SIRT1 gene was removed from cervical cancer cells. The consequence of this was that viral replication was elevated, probably due to a stabilization of the viral replication factor E2. The overall results demonstrate that an enzyme with known inhibitors, SIRT1, plays an important role in controlling how HPV16 makes copies of itself. Targeting this enzyme could be a new therapeutic approach for combating HPV spread and disease.
Collapse
|
6
|
The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment. J Virol 2016; 91:JVI.01853-16. [PMID: 27795438 PMCID: PMC5165203 DOI: 10.1128/jvi.01853-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2Y131A) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2WT), the chromatin-bound pool of E2Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes.
IMPORTANCE Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection is a risk factor for cancer development and is partly achieved by the attachment of viral DNA to cellular chromatin during cell division. The HPV E2 protein plays a critical role in this tethering by binding simultaneously to the viral genome and to chromatin during mitosis. We previously showed that the cellular DNA helicase ChlR1 is required for loading of the bovine papillomavirus E2 protein onto chromatin during DNA synthesis. Here we identify a mutation in HPV16 E2 that abrogates interaction with ChlR1, and we show that ChlR1 regulates the chromatin association of HPV16 E2 and that this virus-host interaction is essential for viral episome maintenance.
Collapse
|
7
|
Giaretta A, Di Camillo B, Barzon L, Toffolo GM. Modeling HPV early promoter regulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6493-6. [PMID: 26737780 DOI: 10.1109/embc.2015.7319880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In high risk forms, human papillomaviruses (HPV) can either induce or promote cancerous lesions, especially cervical cancer which is considered the second most common cancer in the women worldwide. HPV life cycle is tightly linked to the infected cell differentiation program and its evolution is strictly joined to the switch between the early and the late viral polycistronic promoters.The aim of this study is to develop a novel mathematical model which collects and structures the available biologic knowledge on the early promoter regulation for HPV in episomal form. The model includes the main regulation by E2 viral protein as well as a novel discovered co-regulation function mediated by the viral E1 protein. Only by including both E2 and E1 regulatory effect the model is able to correctly predict the temporal behaviour of the early promoter switching off. A possible use of the model as in silico tool to evaluate new antiviral therapies is discussed.
Collapse
|
8
|
Siddiqa A, Léon KC, James CD, Bhatti MF, Roberts S, Parish JL. The human papillomavirus type 16 L1 protein directly interacts with E2 and enhances E2-dependent replication and transcription activation. J Gen Virol 2015; 96:2274-2285. [PMID: 25911730 PMCID: PMC4681068 DOI: 10.1099/vir.0.000162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human papillomavirus (HPV) E2 protein is a multifunctional protein essential for the control of virus gene expression, genome replication and persistence. E2 is expressed throughout the differentiation-dependent virus life cycle and is functionally regulated by association with multiple viral and cellular proteins. Here, we show for the first time to our knowledge that HPV16 E2 directly associates with the major capsid protein L1, independently of other viral or cellular proteins. We have mapped the L1 binding region within E2 and show that the α-2 helices within the E2 DNA-binding domain mediate L1 interaction. Using cell-based assays, we show that co-expression of L1 and E2 results in enhanced transcription and virus origin-dependent DNA replication. Upon co-expression in keratinocytes, L1 reduces nucleolar association of E2 protein, and when co-expressed with E1 and E2, L1 is partially recruited to viral replication factories. Furthermore, co-distribution of E2 and L1 was detected in the nuclei of upper suprabasal cells in stratified epithelia of HPV16 genome-containing primary human keratinocytes. Taken together, our findings suggest that the interaction between E2 and L1 is important for the regulation of E2 function during the late events of the HPV life cycle.
Collapse
Affiliation(s)
- Abida Siddiqa
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan
| | - Karen Campos Léon
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire D James
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan
| | - Sally Roberts
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joanna L Parish
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication. J Virol 2015; 89:4980-91. [PMID: 25694599 DOI: 10.1128/jvi.00335-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. IMPORTANCE Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease burden on the current, and future, generations. Targeting viral DNA replication that is mediated by two viral proteins, E1 and E2, in association with cellular proteins such as TopBP1 and Brd4 would have therapeutic benefits. This report suggests a role for these cellular proteins in the initiation of viral DNA replication by HPV16 E1-E2 but not for continuing replication. This is important if viral replication is to be effectively targeted; we need to understand the viral and cellular proteins required at each phase of viral DNA replication so that it can be effectively disrupted.
Collapse
|
10
|
The role of ubiquitin and ubiquitin-like modification systems in papillomavirus biology. Viruses 2014; 6:3584-611. [PMID: 25254385 PMCID: PMC4189040 DOI: 10.3390/v6093584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
Collapse
|
11
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J Virol 2012; 87:951-64. [PMID: 23135710 DOI: 10.1128/jvi.01943-12] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G(2) phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.
Collapse
|
13
|
An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol 2012; 86:12806-15. [PMID: 22973044 DOI: 10.1128/jvi.01002-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In human papillomavirus DNA replication, the viral protein E2 forms homodimers and binds to 12-bp palindromic DNA sequences surrounding the origin of DNA replication. Via a protein-protein interaction, it then recruits the viral helicase E1 to an A/T-rich origin of replication, whereupon a dihexamer forms, resulting in DNA replication initiation. In order to carry out DNA replication, the viral proteins must interact with host factors that are currently not all known. An attractive cellular candidate for regulating viral replication is TopBP1, a known interactor of the E2 protein. In mammalian DNA replication, TopBP1 loads DNA polymerases onto the replicative helicase after the G(1)-to-S transition, and this process is tightly cell cycle controlled. The direct interaction between E2 and TopBP1 would allow E2 to bypass this cell cycle control, resulting in DNA replication more than once per cell cycle, which is a requirement for the viral life cycle. We report here the generation of an HPV16 E2 mutant compromised in TopBP1 interaction in vivo and demonstrate that this mutant retains transcriptional activation and repression functions but has suboptimal DNA replication potential. Introduction of this mutant into a viral life cycle model results in the failure to establish viral episomes. The results present a potential new antiviral target, the E2-TopBP1 interaction, and increase our understanding of the viral life cycle, suggesting that the E2-TopBP1 interaction is essential.
Collapse
|