1
|
Genetic Diversity of Viral Populations Associated with Ananas Germplasm and Improvement of Virus Diagnostic Protocols. Pathogens 2022; 11:pathogens11121470. [PMID: 36558805 PMCID: PMC9787488 DOI: 10.3390/pathogens11121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Pineapple (Ananas comosus L. [Merr.]) accessions from the U.S. Tropical Plant Genetic Resources and Disease Research (TPGRDR) in Hilo, Hawaii were subjected to RNA-sequencing to study the occurrence of viral populations associated with this vegetatively propagated crop. Analysis of high-throughput sequencing data obtained from 24 germplasm accessions and public domain transcriptome shotgun assembly (TSA) data identified two novel sadwaviruses, putatively named "pineapple secovirus C" (PSV-C) and "pineapple secovirus D" (PSV-D). They shared low amino acid sequence identity (from 34.8 to 41.3%) compared with their homologs in the Pro-pol region of the previously reported PSV-A and PSV-B. The complete genome (7485 bp) corresponding to a previously reported partial sequence of the badnavirus, pineapple bacilliform ER virus (PBERV), was retrieved from one of the datasets. Overall, we discovered a total of 69 viral sequences representing ten members within the Ampelovirus, Sadwavirus, and Badnavirus genera. Genetic diversity and recombination events were found in members of the pineapple mealybug wilt-associated virus (PMWaV) complex as well as PSVs. PMWaV-1, -3, and -6 presented recombination events across the quintuple gene block, while no recombination events were found for PMWaV-2. High recombination frequency of the RNA1 and RNA2 molecules from PSV-A and PSV-B were congruent with the diversity found by phylogenetic analyses. Here, we also report the development and improvement of RT-PCR diagnostic protocols for the specific identification and detection of viruses infecting pineapple based on the diverse viral populations characterized in this study. Given the high occurrence of recombination events, diversity, and discovery of viruses found in Ananas germplasm, the reported and validated RT-PCR assays represent an important advance for surveillance of viral infections of pineapple.
Collapse
|
2
|
Kwibuka Y, Bisimwa E, Blouin AG, Bragard C, Candresse T, Faure C, Filloux D, Lett JM, Maclot F, Marais A, Ravelomanantsoa S, Shakir S, Vanderschuren H, Massart S. Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands. Viruses 2021; 13:v13061030. [PMID: 34072594 PMCID: PMC8226816 DOI: 10.3390/v13061030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cassava is one of the most important staple crops in Africa and its production is seriously damaged by viral diseases. In this study, we identify for the first time and characterize the genome organization of novel ampeloviruses infecting cassava plants in diverse geographical locations using three high-throughput sequencing protocols [Virion-Associated Nucleotide Acid (VANA), dsRNA and total RNA], and we provide a first analysis of the diversity of these agents and of the evolutionary forces acting on them. Thirteen new Closteroviridae isolates were characterized in field-grown cassava plants from the Democratic Republic of Congo (DR Congo), Madagascar, Mayotte, and Reunion islands. The analysis of the sequences of the corresponding contigs (ranging between 10,417 and 13,752 nucleotides in length) revealed seven open reading frames. The replication-associated polyproteins have three expected functional domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). Additional open reading frames code for a small transmembrane protein, a heat-shock protein 70 homolog (HSP70h), a heat shock protein 90 homolog (HSP90h), and a major and a minor coat protein (CP and CPd respectively). Defective genomic variants were also identified in some cassava accessions originating from Madagascar and Reunion. The isolates were found to belong to two species tentatively named Manihot esculenta-associated virus 1 and 2 (MEaV-1 and MEaV-2). Phylogenetic analyses showed that MEaV-1 and MEaV-2 belong to the genus Ampelovirus, in particular to its subgroup II. MEaV-1 was found in all of the countries of study, while MEaV-2 was only detected in Madagascar and Mayotte. Recombination analysis provided evidence of intraspecies recombination occurring between the isolates from Madagascar and Mayotte. No clear association with visual symptoms in the cassava host could be identified.
Collapse
Affiliation(s)
- Yves Kwibuka
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
- Correspondence: (Y.K.); (S.M.)
| | - Espoir Bisimwa
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
| | - Arnaud G. Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Thierry Candresse
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Chantal Faure
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France;
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France;
| | - François Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Armelle Marais
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | | | - Sara Shakir
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, 3000 Leuven, Belgium
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Correspondence: (Y.K.); (S.M.)
| |
Collapse
|
3
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
4
|
Mongkolsiriwattana C, Zhou JS, Ng JCK. A 3'-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity. Sci Rep 2016; 6:34482. [PMID: 27694962 PMCID: PMC5046102 DOI: 10.1038/srep34482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023] Open
Abstract
The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.
Collapse
Affiliation(s)
- Chawin Mongkolsiriwattana
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Jaclyn S. Zhou
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - James C. K. Ng
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
5
|
Owen CA, Moukarzel R, Huang X, Kassem MA, Eliasco E, Aranda MA, Coutts RHA, Livieratos IC. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts. Viruses 2016; 8:v8060170. [PMID: 27314380 PMCID: PMC4926190 DOI: 10.3390/v8060170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022] Open
Abstract
Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.
Collapse
Affiliation(s)
- Carolyn A Owen
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| | - Romy Moukarzel
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| | - Xiao Huang
- Sir Alexander Fleming Building, Department of Biological Sciences, Imperial College, London SW7 2AZ, UK.
| | - Mona A Kassem
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Eleonora Eliasco
- Sir Alexander Fleming Building, Department of Biological Sciences, Imperial College, London SW7 2AZ, UK.
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, UK.
| | - Ioannis C Livieratos
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| |
Collapse
|
6
|
Kubota K, Ng JCK. Lettuce chlorosis virus P23 Suppresses RNA Silencing and Induces Local Necrosis with Increased Severity at Raised Temperatures. PHYTOPATHOLOGY 2016; 106:653-62. [PMID: 26828232 DOI: 10.1094/phyto-09-15-0219-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA silencing functions as an antivirus defense strategy in plants, one that plant viruses counter by producing viral suppressors of RNA silencing (VSRs). VSRs have been identified in three members of the genus Crinivirus but they do not all share identical suppression mechanisms. Here, we used Agrobacterium co-infiltration assays to investigate the suppressor activity of proteins encoded by Lettuce chlorosis virus (LCV). Of 7 LCV proteins (1b, P23, HSP70 homolog, P60, CP, CPm, and P27) tested for the suppression of silencing of green fluorescent protein (GFP) expression in wild-type Nicotiana benthamiana plants, only P23 suppressed the onset of local silencing. Small-interfering (si)RNA accumulation was reduced in leaves co-infiltrated with P23, suggesting that P23 inhibited the accumulation or enhanced the degradation of siRNA. P23 also inhibited the cell-to-cell and systemic movement of RNA silencing in GFP-expressing transgenic N. benthamiana plants. Expression of P23 via agroinfiltration of N. benthamiana leaves induced local necrosis that increased in severity at elevated temperatures, a novelty given that a direct temperature effect on necrosis severity has not been reported for the other crinivirus VSRs. These results further affirm the sophistication of crinivirus VSRs in mediating the evasion of host's antiviral defenses and in symptom modulation.
Collapse
Affiliation(s)
- Kenji Kubota
- First author: NARO Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan, and Department of Plant Pathology and Microbiology, University of California, Riverside 92521; second author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521
| | - James C K Ng
- First author: NARO Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan, and Department of Plant Pathology and Microbiology, University of California, Riverside 92521; second author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521
| |
Collapse
|
7
|
Shi Y, Shi Y, Gu Q, Yan F, Sun X, Li H, Chen L, Sun B, Wang Z. Infectious clones of the crinivirus cucurbit chlorotic yellows virus are competent for plant systemic infection and vector transmission. J Gen Virol 2016; 97:1458-1461. [PMID: 26982585 DOI: 10.1099/jgv.0.000453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucurbit chlorotic yellows virus (CCYV), a recently identified bipartite crinivirus, causes economic losses in cucurbit plants. CCYV is naturally transmitted only by whitefly Bemisia tabaci. Here we constructed full-length cDNA clones of CCYV (RNA1 and RNA2) fused to the T7 RNA polymerase promoter and the cauliflower mosaic virus 35S promoter. CCYV replicated and accumulated efficiently in Cucumis sativus protoplasts transfected with in vitro transcripts. Without RNA2, RNA1 replicated efficiently in C. sativus protoplasts. Agroinoculation with the infectious cDNA clones of CCYV resulted in systemic infection in the host plants of C. sativus and Nicotiana benthamiana. Virus derived from the infectious clones could be transmitted between cucumber plants by vector whiteflies. This system will greatly enhance the reverse genetic studies of CCYV gene functions.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xinyan Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhenyue Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
8
|
Orílio AF, Fortes IM, Navas-Castillo J. Infectious cDNA clones of the crinivirus Tomato chlorosis virus are competent for systemic plant infection and whitefly-transmission. Virology 2014; 464-465:365-374. [PMID: 25113907 DOI: 10.1016/j.virol.2014.07.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/12/2014] [Accepted: 07/19/2014] [Indexed: 11/30/2022]
Abstract
Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae) causes important emergent diseases in tomato and other solanaceous crops. ToCV is not transmitted mechanically and is naturally transmitted by whiteflies. The ToCV genome consists of two molecules of linear, positive-sense RNA encapsidated into long flexuous virions. We present the construction of full-length cDNA clones of the ToCV genome (RNA1 and RNA2) fused to the SP6 RNA polymerase promoter and under the control of the CaMV 35S promoter. RNA1 replicated in the absence of RNA2 in Nicotiana benthamiana and tomato protoplasts after inoculation with cDNA-derived in vitro transcripts. Agroinfiltration of RNA1 and RNA2 under the 35S promoter resulted in systemic infection in N. benthamiana plants. In addition, tomato plants were infected by grafting with agroinfected N. benthamiana scions, showing the typical ToCV symptoms. The viral progeny generated in tomato was transmissible by the whitefly Bemisia tabaci.
Collapse
Affiliation(s)
- Anelise F Orílio
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
9
|
Abrahamian PE, Abou-Jawdah Y. Whitefly-transmitted criniviruses of cucurbits: current status and future prospects. Virusdisease 2014; 25:26-38. [PMID: 24426308 PMCID: PMC3889241 DOI: 10.1007/s13337-013-0173-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022] Open
Abstract
In the past decade, crinviruses have gained interest due to their rapid widespread and destructive nature for cucurbit cultivation. Several members of the genus Crinivirus are considered emerging viruses. Currently, four criniviruses: Beet pseudo-yellows virus, Cucurbit chlorotic yellows virus, Cucurbit yellow stunting disorder virus and Lettuce infectious yellows virus have been reported to infect field- or greenhouse- grown cucurbits. Apart from their cucurbit hosts, criniviruses infect other cash crops and weeds. Criniviruses are exclusively transmitted by whiteflies. The virion titer and the vector genus or species complex are predominant factors affecting virus transmission. These criniviruses maintain genetic stability with limited intra-species variability. They share similar core genome structure and replication strategies with some variations in the non-core proteins and downstream replication processes. Management of the diseases induced by criniviruses relies on integrated disease management strategies and on resistant varieties, when available. This review will cover their epidemiology, molecular biology, detection and management.
Collapse
Affiliation(s)
- Peter E. Abrahamian
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| | - Yusuf Abou-Jawdah
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| |
Collapse
|
10
|
Bar-Joseph M, Mawassi M. The defective RNAs of Closteroviridae. Front Microbiol 2013; 4:132. [PMID: 23734149 PMCID: PMC3661990 DOI: 10.3389/fmicb.2013.00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
The family Closteroviridae consists of two genera, Closterovirus and Ampelovirus with monopartite genomes transmitted respectively by aphids and mealybugs and the Crinivirus with bipartite genomes transmitted by whiteflies. The Closteroviridae consists of more than 30 virus species, which differ considerably in their phytopathological significance. Some, like beet yellows virus and citrus tristeza virus (CTV) were associated for many decades with their respective hosts, sugar beets and citrus. Others, like the grapevine leafroll-associated ampeloviruses 1, and 3 were also associated with their grapevine hosts for long periods; however, difficulties in virus isolation hampered their molecular characterization. The majority of the recently identified Closteroviridae were probably associated with their vegetative propagated host plants for long periods and only detected through the considerable advances in dsRNA isolation and sequencing of PCR amplified replicons. Molecular characterization of CTV and several other Closteroviridae revealed that, in addition to genomic and subgenomic RNAs, infected plants contain several different subviral defective RNAs (dRNAs). The roles and biological functions of dRNAs associated with Closteroviridae remain terra incognita.
Collapse
Affiliation(s)
- Moshe Bar-Joseph
- The S. Tolkowsky Laboratory, Virology Department, Plant Protection Institute, Agricultural Research Organization Beit Dagan, Israel
| | | |
Collapse
|
11
|
Dolja VV, Koonin EV. The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Front Microbiol 2013; 4:83. [PMID: 23596441 PMCID: PMC3622897 DOI: 10.3389/fmicb.2013.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/22/2013] [Indexed: 12/24/2022] Open
Abstract
Important progress in understanding replication, interactions with host plants, and evolution of closteroviruses enabled engineering of several vectors for gene expression and virus-induced gene silencing. Due to the broad host range of closteroviruses, these vectors expanded vector applicability to include important woody plants such as citrus and grapevine. Furthermore, large closterovirus genomes offer genetic capacity and stability unrivaled by other plant viral vectors. These features provided immense opportunities for using closterovirus vectors for the functional genomics studies and pathogen control in economically valuable crops. This review briefly summarizes advances in closterovirus research during the last decade, explores the relationships between virus biology and vector design, and outlines the most promising directions for future application of closterovirus vectors.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA ; Center for Genome Research and Biocomputing, Oregon State University Corvallis, OR, USA
| | | |
Collapse
|
12
|
Chen AYS, Pavitrin A, Ng JCK. Agroinoculation of the cloned infectious cDNAs of Lettuce chlorosis virus results in systemic plant infection and production of whitefly transmissible virions. Virus Res 2012; 169:310-5. [PMID: 22926259 DOI: 10.1016/j.virusres.2012.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022]
Abstract
Lettuce chlorosis virus (LCV) is a single stranded, positive strand RNA virus that is solely transmitted by specific whitefly vectors (Bemisia tabaci biotypes A and B) but not by mechanical leaf-rub inoculation. The roles of viral encoded proteins involved in the infection cycle of LCV have not yet been characterized due to the lack of reverse genetic tools. We present here a report of the successful development of an Agrobacterium-mediated inoculation system for the cloned cDNA constructs of LCV. The cDNAs of both LCV RNAs 1 and 2 were engineered into binary vectors in which the expression of LCV RNAs was regulated under a Cauliflower mosaic virus (CaMV) 35S promoter. In addition, by engineering the sequence elements of the Hepatitis delta virus ribozyme and the nopaline synthase 3' untranslated region immediately downstream of the last nucleotide of LCV RNAs 1 and 2 in the binary vector constructs, the in planta produced LCV transcripts were expected to bear authentic 3' termini. Both constructs were transformed into Agrobacterium tumefaciens cells and infiltrated in Nicotiana benthamiana plants. Three to four weeks post-agroinoculation, the N. benthamiana plants developed typical interveinal chlorosis and LCV infection was detected in the systemic leaves by reverse transcription-PCR. Virions purified from the LCV-infected N. benthamiana plants were flexuous rod-shaped and were transmissible by both B. tabaci biotypes A and B following membrane feeding. These results support the conclusion that Agrobacterium-mediated inoculation of LCV binary vectors in N. benthamiana plants results in LCV infection and the production of biologically active, whitefly transmissible virions. This system represents an important tool for use with reverse genetics designed for the study of LCV gene functions.
Collapse
Affiliation(s)
- Angel Y S Chen
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, United States
| | | | | |
Collapse
|