1
|
Muz D, Can H, Karakavuk M, Döşkaya M, Özdemir HG, Değirmenci Döşkaya A, Atalay Şahar E, Pektaş B, Karakuş M, Töz S, Özbel Y, Gürüz AY, Muz MN. The molecular and serological investigation of Feline immunodeficiency virus and Feline leukemia virus in stray cats of Western Turkey. Comp Immunol Microbiol Infect Dis 2021; 78:101688. [PMID: 34229197 DOI: 10.1016/j.cimid.2021.101688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the Feline immunodeficiency virus (FIV) / Feline leukemia virus (FeLV) infection prevalence among looking healthy stray cats in Western Turkey by serologic and molecular-based tests. A total of 1008 blood samples from the stray cats were used in this study. All samples were tested for FIV antibodies / proviral DNA and FeLV antibodies / antigens / proviral DNA. The genetic characterization and phylogenetic analysis of FeLV and FIV were carried out in this study. These cats also tested for Leishmaniasis and Toxoplasmosis previously. FIV Ab and proviral DNA detected in 25.2 % and 25.5 % of samples, respectively. FeLV Ab, Ag, proviral DNA positivity was in 45.2 %, in 3.3 %, in 69.7 %, respectively. The molecular detection and phylogenetic analysis of the current FeLV pol gene and FIV gag gene performed. The molecular characterization for the pol gene of FeLV (enFeLV and exFeLV) among Turkey's cat population was reported for the first time. The exFeLV pol sequences closer to the FeLV-A genotype, and the enFeLV pol sequences overlapped with other enFeLV. The current FIV gag sequences were clustered within the subtypes A, B, and C. The findings revealed FeLV subtype A and FIV subtype-A, subtype-B, subtype-C circulate among Turkish stray cats. Single and multiple co-infection positivity was found higher compared to previous reports.
Collapse
Affiliation(s)
- Dilek Muz
- Department of Virology, Tekirdag Namik Kemal University, Faculty of Veterinary Medicine, Tekirdag 59030, Turkey.
| | - Hüseyin Can
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova, Izmir, 35100, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey; Odemiş Training Collage, Ege University, Odemiş, İzmir, 35400, Turkey
| | - Mert Döşkaya
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | | | | | - Esra Atalay Şahar
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova, Izmir, 35100, Turkey
| | - Bayram Pektaş
- Izmir Atatürk Training and Research Hospital, Department of Microbiology, Yeşilyurt, Izmir, Turkey
| | - Mehmet Karakuş
- Department of Medical Microbiology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, Turkey
| | - Seray Töz
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Yusuf Özbel
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Mustafa Necati Muz
- Department of Parasitology, Tekirdag Namik Kemal University, Faculty of Veterinary Medicine, Tekirdag 59030, Turkey
| |
Collapse
|
2
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Ross P, Nemec PS, Kapatos A, Miller KR, Holmes JC, Suter SE, Buntzman AS, Soderblom EJ, Collins EJ, Hess PR. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif. Vet Immunol Immunopathol 2018; 197:76-86. [PMID: 29475511 DOI: 10.1016/j.vetimm.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Ideally, CD8+ T-cell responses against virally infected or malignant cells are defined at the level of the specific peptide and restricting MHC class I element, a determination not yet made in the dog. To advance the discovery of canine CTL epitopes, we sought to determine whether a putative classical MHC class Ia gene, Dog Leukocyte Antigen (DLA)-88, presents peptides from a viral pathogen, canine distemper virus (CDV). To investigate this possibility, DLA-88*508:01, an allele prevalent in Golden Retrievers, was expressed as a FLAG-tagged construct in canine histiocytic cells to allow affinity purification of peptide-DLA-88 complexes and subsequent elution of bound peptides. Pattern analysis of self peptide sequences, which were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), permitted binding preferences to be inferred. DLA-88*508:01 binds peptides that are 9-to-12 amino acids in length, with a modest preference for 9- and 11-mers. Hydrophobic residues are favored at positions 2 and 3, as are K, R or F residues at the C-terminus. Testing motif-matched and -unmatched synthetic peptides via peptide-MHC surface stabilization assay using a DLA-88*508:01-transfected, TAP-deficient RMA-S line supported these conclusions. With CDV infection, 22 viral peptides ranging from 9-to-12 residues in length were identified in DLA-88*508:01 eluates by LC-MS/MS. Combined motif analysis and surface stabilization assay data suggested that 11 of these 22 peptides, derived from CDV hemagglutinin, large polymerase, matrix, nucleocapsid, and V proteins, were processed and presented, and thus, potential targets of anti-viral CTL in DLA-88*508:01-bearing dogs. The presentation of diverse self and viral peptides indicates that DLA-88 is a classical MHC class Ia gene.
Collapse
Affiliation(s)
- Peter Ross
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Paige S Nemec
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Alexander Kapatos
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Keith R Miller
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Steven E Suter
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Adam S Buntzman
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Institute for Genome Science and Policy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward J Collins
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA.
| |
Collapse
|
4
|
Day MJ. Cats are not small dogs: is there an immunological explanation for why cats are less affected by arthropod-borne disease than dogs? Parasit Vectors 2016; 9:507. [PMID: 27646278 PMCID: PMC5028948 DOI: 10.1186/s13071-016-1798-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/14/2016] [Indexed: 12/28/2022] Open
Abstract
It is widely recognized that cats appear to be less frequently affected by arthropod-borne infectious diseases than dogs and share fewer zoonotic pathogens with man. This impression is supported by the relative lack of scientific publications related to feline vector-borne infections. This review explores the possible reasons for the difference between the two most common small companion animal species, including the hypothesis that cats might have a genetically-determined immunological resistance to arthropod vectors or the microparasites they transmit. A number of simple possibilities might account for the lower prevalence of these diseases in cats, including factors related to the lifestyle and behaviour of the cat, lesser spend on preventative healthcare for cats and reduced opportunities for research funding for these animals. The dog and cat have substantially similar immune system components, but differences in immune function might in part account for the markedly distinct prevalence and clinicopathological appearance of autoimmune, allergic, idiopathic inflammatory, immunodeficiency, neoplastic and infectious diseases in the two species. Cats have greater genetic diversity than dogs with much lower linkage disequilibrium in feline compared with canine breed groups. Immune function is intrinsically related to the nature of the intestinal microbiome and subtle differences between the canine and feline microbial populations might also impact on immune function and disease resistance. The reasons for the apparent lesser susceptibility of cats to arthropod-borne infectious diseases are likely to be complex, but warrant further investigation.
Collapse
Affiliation(s)
- Michael J Day
- School of Veterinary Sciences, University of Bristol, Langford, North Somerset, BS40 5DU, UK.
| |
Collapse
|
5
|
|
6
|
Mason AS, Fulton JE, Hocking PM, Burt DW. A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics 2016; 17:688. [PMID: 27577548 PMCID: PMC5006616 DOI: 10.1186/s12864-016-3043-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022] Open
Abstract
Background LTR retrotransposons contribute approximately 10 % of the mammalian genome, but it has been previously reported that there is a deficit of these elements in the chicken relative to both mammals and other birds. A novel LTR retrotransposon classification pipeline, LocaTR, was developed and subsequently utilised to re-examine the chicken LTR retrotransposon annotation, and determine if the proposed chicken deficit is biologically accurate or simply a technical artefact. Results Using LocaTR 3.01 % of the chicken galGal4 genome assembly was annotated as LTR retrotransposon-derived elements (nearly double the previous annotation), including 1,073 that were structurally intact. Element distribution is significantly correlated with chromosome size and is non-random within each chromosome. Elements are significantly depleted within coding regions and enriched in gene sparse areas of the genome. Over 40 % of intact elements are found in clusters, unrelated by age or genera, generally in poorly recombining regions. The transcription of most LTR retrotransposons were suppressed or incomplete, but individual domain and full length retroviral transcripts were produced in some cases, although mostly with regularly interspersed stop codons in all reading frames. Furthermore, RNAseq data from 23 diverse tissues enabled greater characterisation of the co-opted endogenous retrovirus Ovex1. This gene was shown to be expressed ubiquitously but at variable levels across different tissues. LTR retrotransposon content was found to be very variable across the avian lineage and did not correlate with either genome size or phylogenetic position. However, the extent of previous, species-specific LTR retrotransposon annotation appears to be a confounding factor. Conclusions Use of the novel LocaTR pipeline has nearly doubled the annotated LTR retrotransposon content of the chicken genome compared to previous estimates. Further analysis has described element distribution, clustering patterns and degree of expression in a variety of adult tissues, as well as in three embryonic stages. This study also enabled better characterisation of the co-opted gamma retroviral envelope gene Ovex1. Additionally, this work suggests that there is no deficit of LTR retrotransposons within the Galliformes relative to other birds, or to mammalian genomes when scaled for the three-fold difference in genome size. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3043-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew S Mason
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Janet E Fulton
- Hy-Line International, 1915 Sugar Grove Avenue, Dallas Grove, IA, 50063, USA
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
7
|
Garcia-Etxebarria K, Jugo BM. Genome-wide reexamination of endogenous retroviruses in Rattus norvegicus. Virology 2016; 494:119-28. [PMID: 27107945 DOI: 10.1016/j.virol.2016.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/18/2023]
Abstract
Endogenous retroviruses (ERVs) are remnants of retroviral infections that are present in a large number of vertebrate genomes. Based on the proposal that the rat could act as a reservoir of retroviruses, rat ERVs were analysed in silico using a whole-genome approach. To enrich the detected ERV groups, we applied an upgraded approach based on the hidden Markov model. We found 2637 elements that were classified into the following groups: 9 groups of Class I; 15 of Class II, 7 of them previously described; 1 of Class III; and 3 groups whose classification was unclear but were distantly related to Class I. Sixteen ERV groups seemed to be specific to rat. The high number of rat-specific groups might be related to the contact of rats with retroviruses and their role as a reservoir. In addition, the env gene of the more extended groups seemed to be undetectable.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 644 Postakutxa, E-48080 Bilbao, Spain
| | - Begoña M Jugo
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 644 Postakutxa, E-48080 Bilbao, Spain.
| |
Collapse
|
8
|
McClenahan SD, Uhlenhaut C, Krause PR. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine 2014; 32:7115-21. [DOI: 10.1016/j.vaccine.2014.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
|
9
|
Garcia-Etxebarria K, Sistiaga-Poveda M, Jugo BM. Endogenous retroviruses in domestic animals. Curr Genomics 2014; 15:256-65. [PMID: 25132796 PMCID: PMC4133949 DOI: 10.2174/1389202915666140520003503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/15/2023] Open
Abstract
Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates. Although the study of ERVs has been carried out mainly in humans and model organisms, recently, domestic animals have become important, and some species have begun to be analyzed to gain further insight into ERVs. Due to the availability of complete genomes and the development of new computer tools, ERVs can now be analyzed from a genome-wide viewpoint. In addition, more experimental work is being carried out to analyze the distribution, expression and interplay of ERVs within a host genome. Cats, cattle, chicken, dogs, horses, pigs and sheep have been scrutinized in this manner, all of which are interesting species in health and economic terms. Furthermore, several studies have noted differences in the number of endogenous retroviruses and in the variability of these elements among different breeds, as well as their expression in different tissues and the effects of their locations, which, in some cases, are near genes. These findings suggest a complex, intriguing relationship between ERVs and host genomes. In this review, we summarize the most important in silico and experimental findings, discuss their implications and attempt to predict future directions for the study of these genomic elements.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Maialen Sistiaga-Poveda
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Begoña Marina Jugo
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| |
Collapse
|
10
|
Tarlinton RE, Barfoot HK, Allen CE, Brown K, Gifford RJ, Emes RD. Characterisation of a group of endogenous gammaretroviruses in the canine genome. Vet J 2013; 196:28-33. [DOI: 10.1016/j.tvjl.2012.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 12/25/2022]
|
11
|
Song N, Jo H, Choi M, Kim JH, Seo HG, Cha SY, Seo K, Park C. Identification and classification of feline endogenous retroviruses in the cat genome using degenerate PCR and in silico data analysis. J Gen Virol 2013; 94:1587-1596. [PMID: 23515024 DOI: 10.1099/vir.0.051862-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to identify and classify endogenous retroviruses (ERVs) in the cat genome. Pooled DNA from five domestic cats was subjected to degenerate PCR with primers specific to the conserved retroviral pro/pol region. The 59 amplified retroviral sequences were used for in silico analysis of the cat genome (Felis_catus-6.2). We identified 219 ERV γ and β elements from cat genome contigs, which were classified into 42 ERV γ and 4 β families and further analysed. Among them, 99 γ and 5 β ERV elements contained the complete retroviral structure. Furthermore, we identified 757 spuma-like ERV elements based on the sequence homology to murine (Mu)ERV-L and human (H)ERV-L. To the best of our knowledge, this is the first detailed genome-scale analysis examining Felis catus endogenous retroviruses (FcERV) and providing advanced insights into their structural characteristics, localization in the genome, and diversity.
Collapse
Affiliation(s)
- Ning Song
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Haiin Jo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Minkyeung Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Se-Yeoun Cha
- College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea
| | - Kunho Seo
- Colleges of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| |
Collapse
|