1
|
Jiang X, Tan M, Xia M, Huang P, Kennedy MA. Intra-species sialic acid polymorphism in humans: a common niche for influenza and coronavirus pandemics? Emerg Microbes Infect 2021; 10:1191-1199. [PMID: 34049471 PMCID: PMC8208123 DOI: 10.1080/22221751.2021.1935329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ongoing COVID-19 pandemic has led to more than 159 million confirmed cases with over 3.3 million deaths worldwide, but it remains mystery why most infected individuals (∼98%) were asymptomatic or only experienced mild illness. The same mystery applies to the deadly 1918 H1N1 influenza pandemic, which has puzzled the field for a century. Here we discuss dual potential properties of the 1918 H1N1 pandemic viruses that led to the high fatality rate in the small portion of severe cases, while about 98% infected persons in the United States were self-limited with mild symptoms, or even asymptomatic. These variations now have been postulated to be impacted by polymorphisms of the sialic acid receptors in the general population. Since coronaviruses (CoVs) also recognize sialic acid receptors and cause severe acute respiratory syndrome epidemics and pandemics, similar principles of influenza virus evolution and pandemicity may also apply to CoVs. A potential common principle of pathogen/host co-evolution of influenza and CoVs under selection of host sialic acids in parallel with different epidemic and pandemic influenza and coronaviruses is discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| |
Collapse
|
2
|
Braun KM, Moreno GK, Halfmann PJ, Hodcroft EB, Baker DA, Boehm EC, Weiler AM, Haj AK, Hatta M, Chiba S, Maemura T, Kawaoka Y, Koelle K, O’Connor DH, Friedrich TC. Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS Pathog 2021; 17:e1009373. [PMID: 33635912 PMCID: PMC7946358 DOI: 10.1371/journal.ppat.1009373] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts and, potentially, undergo antigenic evolution depend on the ways genetic variation is generated and selected within and between individual hosts. Using domestic cats as a model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over time within hosts, while dynamic sub-consensus diversity reveals processes of genetic drift and weak purifying selection. We further identify a notable variant at amino acid position 655 in Spike (H655Y), which was previously shown to confer escape from human monoclonal antibodies. This variant arises rapidly and persists at intermediate frequencies in index cats. It also becomes fixed following transmission in two of three pairs. These dynamics suggest this site may be under positive selection in this system and illustrate how a variant can quickly arise and become fixed in parallel across multiple transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic processes like narrow transmission bottlenecks and genetic drift typically act to constrain the overall pace of adaptive evolution. Our data suggest that here, positive selection in index cats followed by a narrow transmission bottleneck may have instead accelerated the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study suggests species- and context-specific adaptations are likely to continue to emerge. This underscores the importance of continued genomic surveillance for new SARS-CoV-2 variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection in humans and mammalian model systems.
Collapse
Affiliation(s)
- Katarina M. Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gage K. Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma B. Hodcroft
- Institute of Social and Preventative Medicine, University of Bern, Bern, Switzerland
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma C. Boehm
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amelia K. Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Masato Hatta
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shiho Chiba
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tadashi Maemura
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Braun KM, Moreno GK, Halfmann PJ, Hodcroft EB, Baker DA, Boehm EC, Weiler AM, Haj AK, Hatta M, Chiba S, Maemura T, Kawaoka Y, Koelle K, O'Connor DH, Friedrich TC. Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.16.384917. [PMID: 33236011 PMCID: PMC7685321 DOI: 10.1101/2020.11.16.384917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts and, potentially, undergo antigenic evolution depend on the ways genetic variation is generated and selected within and between individual hosts. Using domestic cats as a model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over time within hosts, while dynamic sub-consensus diversity reveals processes of genetic drift and weak purifying selection. We further identify a notable variant at amino acid position 655 in Spike (H655Y), which was previously shown to confer escape from human monoclonal antibodies. This variant arises rapidly and persists at intermediate frequencies in index cats. It also becomes fixed following transmission in two of three pairs. These dynamics suggest this site may be under positive selection in this system and illustrate how a variant can quickly arise and become fixed in parallel across multiple transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic processes like narrow transmission bottlenecks and genetic drift typically act to constrain the overall pace of adaptive evolution. Our data suggest that here, positive selection in index cats followed by a narrow transmission bottleneck may have instead accelerated the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study suggests species- and context-specific adaptations are likely to continue to emerge. This underscores the importance of continued genomic surveillance for new SARS-CoV-2 variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection in humans and mammalian model systems.
Collapse
Affiliation(s)
- Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Gage K Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Emma B Hodcroft
- Institute of Social and Preventative Medicine, University of Bern, Bern, Switzerland
| | - David A Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Emma C Boehm
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andrea M Weiler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Amelia K Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Masato Hatta
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Shiho Chiba
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Tadashi Maemura
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Katia Koelle
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
4
|
Overeem NJ, Hamming PHE, Grant OC, Di Iorio D, Tieke M, Bertolino MC, Li Z, Vos G, de Vries RP, Woods RJ, Tito NB, Boons GJPH, van der Vries E, Huskens J. Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS CENTRAL SCIENCE 2020; 6:2311-2318. [PMID: 33376792 PMCID: PMC7760459 DOI: 10.1021/acscentsci.0c01175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Understanding how emerging influenza viruses recognize host cells is critical in evaluating their zoonotic potential, pathogenicity, and transmissibility between humans. The surface of the influenza virus is covered with hemagglutinin (HA) proteins that can form multiple interactions with sialic acid-terminated glycans on the host cell surface. This multivalent binding affects the selectivity of the virus in ways that cannot be predicted from the individual receptor-ligand interactions alone. Here, we show that the intrinsic structural and energetic differences between the interactions of avian- or human-type receptors with influenza HA translate from individual site affinity and orientation through receptor length and density on the surface into virus avidity and specificity. We introduce a method to measure virus avidity using receptor density gradients. We found that influenza viruses attached stably to a surface at receptor densities that correspond to a minimum number of approximately 8 HA-glycan interactions, but more interactions were required if the receptors were short and human-type. Thus, the avidity and specificity of influenza viruses for a host cell depend not on the sialic acid linkage alone but on a combination of linkage and the length and density of receptors on the cell surface. Our findings suggest that threshold receptor densities play a key role in virus tropism, which is a predicting factor for both their virulence and zoonotic potential.
Collapse
Affiliation(s)
- Nico J. Overeem
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - P. H. Erik Hamming
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Oliver C. Grant
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
| | - Daniele Di Iorio
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - M. Candelaria Bertolino
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zeshi Li
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gaël Vos
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert J. Woods
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
- E-mail:
| | - Nicholas B. Tito
- Electric
Ant Lab, Science Park
106, 1098 XG Amsterdam, The Netherlands
| | - Geert-Jan P. H. Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Bijvoet Center
for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- E-mail:
| | - Erhard van der Vries
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal
GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
- Department
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- E-mail:
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- E-mail:
| |
Collapse
|
5
|
Lemos D, Stuart JB, Louie W, Singapuri A, Ramírez AL, Watanabe J, Usachenko J, Keesler RI, Sanchez-San Martin C, Li T, Martyn C, Oliveira G, Saraf S, Grubaugh ND, Andersen KG, Thissen J, Allen J, Borucki M, Tsetsarkin KA, Pletnev AG, Chiu CY, Van Rompay KKA, Coffey LL. Two Sides of a Coin: a Zika Virus Mutation Selected in Pregnant Rhesus Macaques Promotes Fetal Infection in Mice but at a Cost of Reduced Fitness in Nonpregnant Macaques and Diminished Transmissibility by Vectors. J Virol 2020; 94:e01605-20. [PMID: 32999034 PMCID: PMC7925200 DOI: 10.1128/jvi.01605-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Although fetal death is now understood to be a severe outcome of congenital Zika syndrome, the role of viral genetics is still unclear. We sequenced Zika virus (ZIKV) from a rhesus macaque fetus that died after inoculation and identified a single intrahost substitution, M1404I, in the ZIKV polyprotein, located in nonstructural protein 2B (NS2B). Targeted sequencing flanking position 1404 in 9 additional macaque mothers and their fetuses identified M1404I at a subconsensus frequency in the majority (5 of 9, 56%) of animals and some of their fetuses. Despite its repeated presence in pregnant macaques, M1404I has occurred rarely in humans since 2015. Since the primary ZIKV transmission cycle is human-mosquito-human, mutations in one host must be retained in the alternate host to be perpetuated. We hypothesized that ZIKV I1404 increases viral fitness in nonpregnant macaques and pregnant mice but is less efficiently transmitted by vectors, explaining its low frequency in humans during outbreaks. By examining competitive fitness relative to that of ZIKV M1404, we observed that ZIKV I1404 produced lower viremias in nonpregnant macaques and was a weaker competitor in tissues. In pregnant wild-type mice, ZIKV I1404 increased the magnitude and rate of placental infection and conferred fetal infection, in contrast to ZIKV M1404, which was not detected in fetuses. Although infection and dissemination rates were not different, Aedes aegypti mosquitoes transmitted ZIKV I1404 more poorly than ZIKV M1404. Our data highlight the complexity of arbovirus mutation-fitness dynamics and suggest that intrahost ZIKV mutations capable of augmenting fitness in pregnant vertebrates may not necessarily spread efficiently via mosquitoes during epidemics.IMPORTANCE Although Zika virus infection of pregnant women can result in congenital Zika syndrome, the factors that cause the syndrome in some but not all infected mothers are still unclear. We identified a mutation that was present in some ZIKV genomes in experimentally inoculated pregnant rhesus macaques and their fetuses. Although we did not find an association between the presence of the mutation and fetal death, we performed additional studies with ZIKV with the mutation in nonpregnant macaques, pregnant mice, and mosquitoes. We observed that the mutation increased the ability of the virus to infect mouse fetuses but decreased its capacity to produce high levels of virus in the blood of nonpregnant macaques and to be transmitted by mosquitoes. This study shows that mutations in mosquito-borne viruses like ZIKV that increase fitness in pregnant vertebrates may not spread in outbreaks when they compromise transmission via mosquitoes and fitness in nonpregnant hosts.
Collapse
Affiliation(s)
- Danilo Lemos
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| | - Jackson B Stuart
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| | - William Louie
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| | - Anil Singapuri
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| | - Ana L Ramírez
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| | - Jennifer Watanabe
- University of California, Davis, California National Primate Research Center, Davis, California, USA
| | - Jodie Usachenko
- University of California, Davis, California National Primate Research Center, Davis, California, USA
| | - Rebekah I Keesler
- University of California, Davis, California National Primate Research Center, Davis, California, USA
| | - Claudia Sanchez-San Martin
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Tony Li
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Calla Martyn
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Glenn Oliveira
- The Scripps Research Institute, San Diego, California, USA
| | - Sharada Saraf
- The Scripps Research Institute, San Diego, California, USA
| | - Nathan D Grubaugh
- The Scripps Research Institute, San Diego, California, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - James Thissen
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jonathan Allen
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Borucki
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Konstantin A Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles Y Chiu
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Koen K A Van Rompay
- University of California, Davis, California National Primate Research Center, Davis, California, USA
| | - Lark L Coffey
- University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California, USA
| |
Collapse
|
6
|
Taubenberger JK, Kash JC, Morens DM. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci Transl Med 2019; 11:eaau5485. [PMID: 31341062 PMCID: PMC11000447 DOI: 10.1126/scitranslmed.aau5485] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood. Sequencing and reconstruction of the 1918 virus has allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. This Review summarizes key findings and still-to-be answered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Ilyicheva T, Durymanov A, Susloparov I, Kolosova N, Goncharova N, Svyatchenko S, Petrova O, Bondar A, Mikheev V, Ryzhikov A. Fatal Cases of Seasonal Influenza in Russia in 2015-2016. PLoS One 2016; 11:e0165332. [PMID: 27776172 PMCID: PMC5077104 DOI: 10.1371/journal.pone.0165332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022] Open
Abstract
The influenza epidemic in 2015–2016 in Russia is characterized by a sharp increase of influenza cases (beginning from the second week of 2016) with increased fatalities. Influenza was confirmed in 20 fatal cases registered among children (0–10 years), in 5 cases among pregnant women, and in 173 cases among elderly people (60 years and older). Two hundred and ninety nine people died from influenza were patients with some chronic problems. The overwhelming majority among the deceased (more than 98%) were not vaccinated against influenza. We isolated 109 influenza A(H1N1)pdm09 and one A(H3N2) virus strains from 501 autopsy material samples. The antigenic features of the strains were similar to the vaccine strains. A phylogenic analysis of hemagglutinin revealed that influenza A(H1N1)pdm09 virus strains belonged to 6B genetic group that had two main dominant subgroups during the 2015–2016 season. In Russia strains of the first group predominated. We registered an increased proportion of strains with D222G mutation in receptor-binding site. A herd immunity analysis carried out immediately prior to the epidemic showed that 34.4% blood sera samples collected in different regions of Russia were positive to A/California/07/09(H1N1)pdm09. We came to a conclusion that public awareness enhancement is necessary to reduce unreasonable refusals of vaccination.
Collapse
Affiliation(s)
- T. Ilyicheva
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - A. Durymanov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - I. Susloparov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Goncharova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - S. Svyatchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - O. Petrova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V. Mikheev
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Ryzhikov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| |
Collapse
|
8
|
Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice. J Virol 2016; 90:9931-9941. [PMID: 27558428 DOI: 10.1128/jvi.01188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.
Collapse
|
9
|
Effects of a hemagglutinin D222G substitution on the pathogenicity of 2009 influenza A (H1N1) virus in mice. Arch Virol 2014; 159:2559-65. [PMID: 24824345 DOI: 10.1007/s00705-014-2104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 01/22/2023]
Abstract
The surface glycoprotein hemagglutinin (HA) of influenza virus initiates the infection process by binding to sialic acid receptors on upper respiratory cells in the host. In contrast to avian influenza viruses, which bind to sialic acids connected by an α2-3 linkage to the penultimate galactose, human influenza viruses prefer sialic acids with an α2-6 linkage. Recently, there have been multiple cases of severe human infections associated with an HA D222G mutant influenza virus. In this study, we have investigated the pathogenic effects of the HA D222G substitution in a 2009 pandemic H1N1 virus in mice. Compared with the A/Korea/01/2009 (K/09) virus, the HA D222G mutant showed reduced growth in cells and reduced binding avidity to human and turkey red blood cells. In a BALB/c mouse infection model, infection with the HA D222G mutant virus resulted in less body weight loss when compared to the parental K/09 virus. Altogether, our data suggest that the HA D222G substitution in the K/09 virus might be deleterious to viral fitness.
Collapse
|
10
|
Naturally occurring mutations in the PA gene are key contributors to increased virulence of pandemic H1N1/09 influenza virus in mice. J Virol 2014; 88:4600-4. [PMID: 24522908 DOI: 10.1128/jvi.03158-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the molecular basis of virulence of pandemic H1N1/09 influenza viruses by reverse genetics based on two H1N1/09 virus isolates (A/California/04/2009 [CA04] and A/swine/Shandong/731/2009 [SD731]) with contrasting pathogenicities in mice. We found that four amino acid mutations (P224S in the PA protein [PA-P224S], PB2-T588I, NA-V106I, and NS1-I123V) contributed to the lethal phenotype of SD731. In particular, the PA-P224S mutation when combined with PA-A70V in CA04 drastically reduced the virus's 50% mouse lethal dose (LD50), by almost 1,000-fold.
Collapse
|
11
|
Corcioli F, Arvia R, Pierucci F, Clausi V, Bonizzoli M, Peris A, Azzi A. HA222 polymorphism in Influenza A(H1N1) 2009 isolates from Intensive Care Units and ambulatory patients during three influenza seasons. Virus Res 2014; 180:39-42. [DOI: 10.1016/j.virusres.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
12
|
Memoli MJ, Athota R, Reed S, Czajkowski L, Bristol T, Proudfoot K, Hagey R, Voell J, Fiorentino C, Ademposi A, Shoham S, Taubenberger JK. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis 2013; 58:214-24. [PMID: 24186906 PMCID: PMC3871797 DOI: 10.1093/cid/cit725] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Medical advances have led to an increase in the world's population of immunosuppressed individuals. The most severely immunocompromised patients are those who have been diagnosed with a hematologic malignancy, solid organ tumor, or who have other conditions that require immunosuppressive therapies and/or solid organ or stem cell transplants. Materials and methods. Medically attended patients with a positive clinical diagnosis of influenza were recruited prospectively and clinically evaluated. Nasal washes and serum were collected. Evaluation of viral shedding, nasal and serum cytokines, clinical illness, and clinical outcomes were performed to compare severely immunocompromised individuals to nonimmunocompromised individuals with influenza infection. Results. Immunocompromised patients with influenza had more severe disease/complications, longer viral shedding, and more antiviral resistance while demonstrating less clinical symptoms and signs on clinical assessment. Conclusions. Immunocompromised patients are at risk for more severe or complicated influenza induced disease, which may be difficult to prevent with existing vaccines and antiviral treatments. Specific issues to consider when managing a severely immunocompromised host include the development of asymptomatic shedding, multi-drug resistance during prolonged antiviral therapy, and the potential high risk of pulmonary involvement. Clinical trials registration, ClinicalTrials.gov identifier NCT00533182.
Collapse
Affiliation(s)
- Matthew J Memoli
- Laboratory of Infectious Diseases, Viral Pathogenesis and Evolution Section
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ruggiero T, De Rosa F, Cerutti F, Pagani N, Allice T, Stella ML, Milia MG, Calcagno A, Burdino E, Gregori G, Urbino R, Di Perri G, Ranieri MV, Ghisetti V. A(H1N1)pdm09 hemagglutinin D222G and D222N variants are frequently harbored by patients requiring extracorporeal membrane oxygenation and advanced respiratory assistance for severe A(H1N1)pdm09 infection. Influenza Other Respir Viruses 2013; 7:1416-26. [PMID: 23927713 PMCID: PMC4634302 DOI: 10.1111/irv.12146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Background In patients with A(H1N1)pdm09 infection, severe lung involvement requiring admission to intensive care units (ICU) has been reported. Mutations at the hemagglutinin (HA) receptor binding site (RBS) have been associated with increased virulence and disease severity, representing a potential marker of critical illness. Objectives To assess the contribution of HA‐RBS variability in critically ill patients, A(H1N1)pdm09 virus from adult patients with severe infection admitted to ICU for extracorporeal membrane oxygenation support (ECMO) during influenza season 2009–2011 in Piemonte (4·2 million inhabitants), northwestern Italy, was studied. Patients and methods We retrospectively analyzed HA‐RBS polymorphisms in ICU patients and compared with those from randomly selected inpatients with mild A(H1N1)pdm09 disease and outpatients with influenza from the local surveillance program. Results By HA‐RBS direct sequencing of respiratory specimens, D222G and D222N viral variants were identified in a higher proportion in ICU patients (n = 8/24, 33·3%) than in patients with mild disease (n = 2/34, 6%) or in outpatients (n = 0/44) (Fisher's exact test P < 0·0001; OR 38·5; CI 95% 4·494–329·9). Eleven ICU patients died (42%), three of them carrying the D222G variant, which was associated with RBS mutation S183P in two. D222G and D222N mutants were identified in upper and lower respiratory samples. Conclusions A(H1N1)pdm09 HA substitutions D222G and D222N were harbored in a significantly higher proportion by patients with acute respiratory distress for A(H1N1)pdm09 severe infection requiring ICU admission and ECMO. These data emphasize the importance of monitoring viral evolution for understanding virus–host adaptation aimed at the surveillance of strain circulation and the study of viral correlates of disease severity.
Collapse
Affiliation(s)
- Tina Ruggiero
- Department of Infectious Diseases, Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stincarelli M, Arvia R, De Marco MA, Clausi V, Corcioli F, Cotti C, Delogu M, Donatelli I, Azzi A, Giannecchini S. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications. Virus Res 2013; 175:151-4. [PMID: 23639426 DOI: 10.1016/j.virusres.2013.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/27/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic.
Collapse
Affiliation(s)
- Maria Stincarelli
- Virology Unit, Department of Public Health, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiao YL, Kash JC, Beres SB, Sheng ZM, Musser JM, Taubenberger JK. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic. J Pathol 2013. [PMID: 23180419 DOI: 10.1002/path.4145] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most biopsy and autopsy tissues are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. The RNA genome of the 1918 pandemic influenza virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Here, the full genome of the 1918 virus at 3000× coverage was determined in one high-throughput sequencing run of a library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. Bacterial sequences associated with secondary bacterial pneumonias were also detected. Host transcripts were well represented in the library. Compared to a 2009 pandemic influenza virus FFPE post-mortem library, the 1918 sample showed significant enrichment for host defence and cell death response genes, concordant with prior animal studies. This methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of diseases.
Collapse
Affiliation(s)
- Yong-Li Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|