1
|
Zhang Q, Zhang Y, Jiu Y. Host caveolin-1 facilitates Zika virus infection by promoting viral RNA replication. J Cell Sci 2024; 137:jcs261877. [PMID: 38660993 DOI: 10.1242/jcs.261877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Zika virus (ZIKV) has gained notoriety in recent years because there are no targeted therapies or vaccines available so far. Caveolin-1 (Cav-1) in host cells plays crucial functions in the invasion of many viruses. However, its specific involvement in ZIKV infection has remained unclear. Here, we reveal that depleting Cav-1 leads to a substantial reduction in ZIKV RNA levels, protein expression and viral particle production, indicating that ZIKV exploits Cav-1 for its infection. By dissecting each stage of the viral life cycle, we unveil that, unlike its invasion role in many other viruses, Cav-1 depletion selectively impairs ZIKV replication, resulting in altered replication dynamics and reduced strand-specific RNA levels, but does not affect viral entry, maturation and release. These results reveal an unforeseen function of Cav-1 in facilitating ZIKV replication, which provides new insights into the intricate interaction between Cav-1 and ZIKV and underscores Cav-1 as a potential candidate for anti-ZIKV approaches.
Collapse
Affiliation(s)
- Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
2
|
Gupta S, Mallick D, Banerjee K, Mukherjee S, Sarkar S, Lee STM, Basuchowdhuri P, Jana SS. D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1. Comput Struct Biotechnol J 2022; 20:766-778. [PMID: 35126886 PMCID: PMC8802530 DOI: 10.1016/j.csbj.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.
Collapse
Key Words
- ARL6IP6, ADP Ribosylation Factor Like GTPase 6 interacting protein 6
- ASC, Apoptosis associated speck-like protein containing a caspase recruitment domain
- BLAST, Basic Local Alignment Search Tool
- CD4+, Cluster of Differentiation 4+
- CD8+, Cluster of Differentiation 8+
- COVID-19, Coronavirus Disease 2019
- Caveolin-1
- Cryo-EM, Cryo Electron Microscope
- Graph theory
- HMOX1, Heme Oxygenase 1
- IFN, Interferon
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMGBSA, Molecular mechanics with generalized Born and surface area solvation
- Molecular dynamics simulation
- Mutation
- NCBI, National Centre for Biotechnology Information
- NF-
κ
B, Nuclear factor kappa light chain enhancer of activated B cells
- NLRP3, Nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing
- ORF, Open Reading Frame
- ORF3a
- PDB, Protein Data Bank
- PISA, Protein Interfaces Surfaces and Assemblies
- PROVEAN, Protein Variation Effect Analyzer
- RMSD, Root Mean Square Deviation
- SARS-CoV-2
- SUN2, SUN domain-containing protein 2
- TRIM59, Tripartite motif-containing protein 59.
Collapse
Affiliation(s)
- Suchetana Gupta
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| | - Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| | - Shrimon Mukherjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | | | - Sonny TM Lee
- Division of Biology, Kansas State University, USA
| | - Partha Basuchowdhuri
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| |
Collapse
|
3
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
4
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Ferreira T, Kulkarni A, Bretscher C, Richter K, Ehrlich M, Marchini A. Oncolytic H-1 Parvovirus Enters Cancer Cells through Clathrin-Mediated Endocytosis. Viruses 2020; 12:v12101199. [PMID: 33096814 PMCID: PMC7594094 DOI: 10.3390/v12101199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
H-1 protoparvovirus (H-1PV) is a self-propagating virus that is non-pathogenic in humans and has oncolytic and oncosuppressive activities. H-1PV is the first member of the Parvoviridae family to undergo clinical testing as an anticancer agent. Results from clinical trials in patients with glioblastoma or pancreatic carcinoma show that virus treatment is safe, well-tolerated and associated with first signs of efficacy. Characterisation of the H-1PV life cycle may help to improve its efficacy and clinical outcome. In this study, we investigated the entry route of H-1PV in cervical carcinoma HeLa and glioma NCH125 cell lines. Using electron and confocal microscopy, we detected H-1PV particles within clathrin-coated pits and vesicles, providing evidence that the virus uses clathrin-mediated endocytosis for cell entry. In agreement with these results, we found that blocking clathrin-mediated endocytosis using specific inhibitors or small interfering RNA-mediated knockdown of its key regulator, AP2M1, markedly reduced H-1PV entry. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. We also show that H-1PV entry is dependent on dynamin, while viral trafficking occurs from early to late endosomes, with acidic pH necessary for a productive infection. This is the first study that characterises the cell entry pathways of oncolytic H-1PV.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Marcelo Ehrlich
- Laboratory of Signal Transduction and Membrane Biology, The Shumins School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
- Correspondence: or ; Tel.: +49-6221-424969 or +352-26-970-856
| |
Collapse
|
6
|
Multifaceted Functions of Host Cell Caveolae/Caveolin-1 in Virus Infections. Viruses 2020; 12:v12050487. [PMID: 32357558 PMCID: PMC7291293 DOI: 10.3390/v12050487] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Virus infection has drawn extensive attention since it causes serious or even deadly diseases, consequently inducing a series of social and public health problems. Caveolin-1 is the most important structural protein of caveolae, a membrane invagination widely known for its role in endocytosis and subsequent cytoplasmic transportation. Caveolae/caveolin-1 is tightly associated with a wide range of biological processes, including cholesterol homeostasis, cell mechano-sensing, tumorigenesis, and signal transduction. Intriguingly, the versatile roles of caveolae/caveolin-1 in virus infections have increasingly been appreciated. Over the past few decades, more and more viruses have been identified to invade host cells via caveolae-mediated endocytosis, although other known pathways have been explored. The subsequent post-entry events, including trafficking, replication, assembly, and egress of a large number of viruses, are caveolae/caveolin-1-dependent. Deprivation of caveolae/caveolin-1 by drug application or gene editing leads to abnormalities in viral uptake, viral protein expression, or virion release, whereas the underlying mechanisms remain elusive and must be explored holistically to provide potential novel antiviral targets and strategies. This review recapitulates our current knowledge on how caveolae/caveolin-1 functions in every step of the viral infection cycle and various relevant signaling pathways, hoping to provide a new perspective for future viral cell biology research.
Collapse
|
7
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
8
|
Lee CY, Lai TY, Tsai MK, Chang YC, Ho YH, Yu IS, Yeh TW, Chou CC, Lin YS, Lawrence T, Hsu LC. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat Commun 2017; 8:15502. [PMID: 28593998 PMCID: PMC5472178 DOI: 10.1038/ncomms15502] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (CAV1), the major constituent of caveolae, plays a pivotal role in various cellular biological functions, including cancer and inflammation. The ubiquitin/proteasomal pathway is known to contribute to the regulation of CAV1 expression, but the ubiquitin ligase responsible for CAV1 protein stability remains unidentified. Here we reveal that E3 ubiquitin ligase ZNRF1 modulates CAV1 protein stability to regulate Toll-like receptor (TLR) 4-triggered immune responses. We demonstrate that ZNRF1 physically interacts with CAV1 in response to lipopolysaccharide and mediates ubiquitination and degradation of CAV1. The ZNRF1-CAV1 axis regulates Akt-GSK3β activity upon TLR4 activation, resulting in enhanced production of pro-inflammatory cytokines and inhibition of anti-inflammatory cytokine IL-10. Mice with deletion of ZNRF1 in their hematopoietic cells display increased resistance to endotoxic and polymicrobial septic shock due to attenuated inflammation. Our study defines ZNRF1 as a regulator of TLR4-induced inflammatory responses and reveals another mechanism for the regulation of TLR4 signalling through CAV1.
Collapse
Affiliation(s)
- Chih-Yuan Lee
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
- Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Meng-Kun Tsai
- Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Yung-Chi Chang
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Yu-Hsin Ho
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Tzu-Wen Yeh
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Chih-Chang Chou
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Toby Lawrence
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, 13288 Marseille, France
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, No. 7 Chung San South Road, Taipei 10002, Taiwan
| |
Collapse
|
9
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|
10
|
Zhang T, Hu Y, Wang T, Cai P. Dihydroartemisinin inhibits the viability of cervical cancer cells by upregulating caveolin 1 and mitochondrial carrier homolog 2: Involvement of p53 activation and NAD(P)H:quinone oxidoreductase 1 downregulation. Int J Mol Med 2017; 40:21-30. [PMID: 28498397 PMCID: PMC5466377 DOI: 10.3892/ijmm.2017.2980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Dihydroartemisinin (DHA) has been shown to inhibit the viability of various cancer cells. Previous studies have revealed that the mechanisms involved in the inhibitory effects of DHA are based on theactivation of p53 and the mitochondrial-related cell death pathway. However, the exact association between upstream signaling and the activation of cell death pathway remains unclear. In this study, we found that DHA treatment induced the upregulation of caveolin 1 (Cav1) and mitochondrial carrier homolog 2 (MTCH2) in HeLa cells, and this was associated with the DHA-induced inhibition of cell viability and DHA-induced apoptosis. Additionally, the overexpression of Cav1 and MTCH2 in HeLa cells enhanced the inhibitory effects of DHA on cell viability. Moreover, we also found that the upregulation of Cav1 contributed to the DHA-mediated p53 activation and the downregulation of the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), which have been reported to contribute to the activation of the cell death pathway. Of note, we also found that DHA induced the nuclear translocation and accumulation of both Cav1 and p53, indicating a novel potential mechanism, namely the regulation of p53 activation by Cav1. On the whole, our study identified Cav1 and MTCH2 as the molecular targets of DHA and revealed a new link between the upstream Cav1/MTCH2 upregulation and the downstream activation of the cell death pathway involved in the DHA-mediated inhibition of cell viability.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Medical Cell Biology and Genetics, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuan Hu
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Ting Wang
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Peiling Cai
- Department of Anatomy and Histology, School of Medicine, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|
11
|
Sclareol inhibits cell proliferation and sensitizes cells to the antiproliferative effect of bortezomib via upregulating the tumor suppressor caveolin-1 in cervical cancer cells. Mol Med Rep 2017; 15:3566-3574. [PMID: 28440485 PMCID: PMC5436196 DOI: 10.3892/mmr.2017.6480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 08/12/2016] [Indexed: 01/03/2023] Open
Abstract
The anticancer effect of sclareol has long been reported, however, the exact mechanisms underlying the antitumorigenic effect of sclareol in cervical carcinoma remain to be fully elucidated. The present study analyzed cell proliferation and cell apoptosis by MTT and FITC-Annexin V assays. The protein levels of caveolin-1 (Cav-1) and copper-zinc superoxide dismutase (SOD)1 were determined by western blotting, and the interaction of Cav1 and HSC70 was investigated by co-immunoprecipitation experiments. The present study found that sclareol inhibited cell proliferation and induced apoptosis in HeLa cells. Two cancer-associated proteins, Cav1 and SOD1 were identified as potential targets of sclareol in HeLa cells. The expression of Cav1 increased when the cells were treated with sclareol, and the protein level of SOD1 was negatively correlated with Cav1. The overexpression of Cav1 enhanced the sensitivity of the HeLa cells to sclareol treatment and downregulated the protein level of SOD1, which exhibited potential associations between Cav1 and SOD1. In addition, sclareol significantly sensitized several cancer cells to the anticancer effect of bortezomib by targeting Cav1 and SOD1. Taken together, the results of the present study demonstrated that sclareol inhibited tumor cell growth through the upregulation of Cav1, and provides a potential therapeutic target for human cancer.
Collapse
|
12
|
Powter EE, Coleman PR, Tran MH, Lay AJ, Bertolino P, Parton RG, Vadas MA, Gamble JR. Caveolae control the anti-inflammatory phenotype of senescent endothelial cells. Aging Cell 2015; 14:102-11. [PMID: 25407919 PMCID: PMC4326911 DOI: 10.1111/acel.12270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2014] [Indexed: 02/03/2023] Open
Abstract
Senescent endothelial cells (EC) have been identified in cardiovascular disease, in angiogenic tumour associated vessels and in aged individuals. We have previously identified a novel anti-inflammatory senescent phenotype of EC. We show here that caveolae are critical in the induction of this anti-inflammatory senescent state. Senescent EC induced by either the overexpression of ARHGAP18/SENEX or by H₂O₂ showed significantly increased numbers of caveolae and associated proteins Caveolin-1, cavin-1 and cavin-2. Depletion of these proteins by RNA interference decreased senescence induced by ARHGAP18 and by H₂O₂. ARHGAP18 overexpression induced a predominantly anti-inflammatory senescent population and depletion of the caveolae-associated proteins resulted in the preferential reduction in this senescent population as measured by neutrophil adhesion and adhesion protein expression after TNFα treatment. In confirmation, EC isolated from the aortas of CAV-1(-/-) mice failed to induce this anti-inflammatory senescent cell population upon expression of ARHGAP18, whereas EC from wild-type mice showed a significant increase. NF-κB is one of the major transcription factors mediating the induction of E-selectin and VCAM-1 expression, adhesion molecules responsible for leucocyte attachment to EC. TNFα-induced activation of NF-κB was suppressed in ARHGAP18-induced senescent EC, and this inhibition was reversed by Caveolin-1 knock-down. Thus, out results demonstrate that an increase in caveolae and its component proteins in senescent ECs is associated with inhibition of the NF-kB signalling pathway and promotion of the anti-inflammatory senescent pathway.
Collapse
Affiliation(s)
- Elizabeth E. Powter
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Paul R. Coleman
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Mai H. Tran
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Angelina J. Lay
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Patrick Bertolino
- Liver Immunology Group Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis The University of Queensland University of St. Lucia Qld 4072Australia
| | - Mathew A. Vadas
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| | - Jennifer R. Gamble
- Centre for the Endothelium Vascular Biology Program Centenary Institute Sydney Australia
- The University of Sydney NSW 2006Australia
| |
Collapse
|
13
|
Lo YT, Nadeau PE, Lin S, Mergia A. Establishing Restricted Expression of Caveolin-1 in HIV Infected Cells and Inhibition of Virus Replication. Open Microbiol J 2014; 8:114-21. [PMID: 25408776 PMCID: PMC4235073 DOI: 10.2174/1874285801408010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/22/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022] Open
Abstract
Background: Caveolin-1 (Cav-1) is the major protein of the caveolae and plays a role in multiple cellular functions and implicated to have anti-HIV activity. Regulated expression of Cav-1 is important for safe and effective use in order to exploit Cav-1 for HIV therapeutic applications. Methods: A series of Cav-1 and GFP expression vectors were constructed under the control of the HIV LTR for conditional expression or CMV promoter and the expression of Cav-1 was monitored in the presence or absence of Tat or HIV infection in order to establish the restricted expression of Cav-1 to HIV infected cells. Results: Cav-1 expression was evident under the control of the HIV LTR in the absence of Tat or HIV infection as demonstrated by immunoblot. Placing two internal ribosomal entry sequences (IRES) and a Rev response element, RRE (5’~ LTR-IRES-GFP-RRE-IRES-Cav-1~3’) resulted in no expression of Cav-1 in the absence of Tat with effective expression in the presence of Tat. Transduction of HIV permissive cells with this construct using a foamy virus vector show that Cav-1 was able to inhibit HIV replication by 82%. Cells that received LTR-IRES-GFP-RRE-IRES-Cav-1 remain healthy in the absence of Tat or HIV infection. Conclusion: These results taken together reveal the inclusion of two IRES establishes a significant reduction of leak through expression of Cav-1 in the absence of Tat or HIV infection. Such regulated expression will have therapeutic application of Cav-1 for HIV infection as well as broad applications which can be beneficial for other host-targeted interventions as therapeutics.
Collapse
Affiliation(s)
- Yung-Tsun Lo
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Peter E Nadeau
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Shanshan Lin
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Ayalew Mergia
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol J 2014; 11:152. [PMID: 25163480 PMCID: PMC4163169 DOI: 10.1186/1743-422x-11-152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Background The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Results Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Conclusions Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-152) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One 2014; 9:e90704. [PMID: 24643062 PMCID: PMC3958351 DOI: 10.1371/journal.pone.0090704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/18/2014] [Indexed: 01/10/2023] Open
Abstract
Lipid rafts are ordered microdomains within cellular membranes that are rich in cholesterol and sphingolipids. Caveolin (Cav-1) and flotillin (Flt-1) are markers of lipid rafts, which serve as an organizing center for biological phenomena and cellular signaling. Lipid rafts involvement in dengue virus (DENV) processing, replication, and assembly remains poorly characterized. Here, we investigated the role of lipid rafts after DENV endocytosis in human microvascular endothelial cells (HMEC-1). The non-structural viral proteins NS3 and NS2B, but not NS5, were associated with detergent-resistant membranes. In sucrose gradients, both NS3 and NS2B proteins appeared in Cav-1 and Flt-1 rich fractions. Additionally, double immunofluorescence staining of DENV-infected HMEC-1 cells showed that NS3 and NS2B, but not NS5, colocalized with Cav-1 and Flt-1. Furthermore, in HMEC-1cells transfected with NS3 protease, shown a strong overlap between NS3 and Cav-1, similar to that in DENV-infected cells. In contrast, double-stranded viral RNA (dsRNA) overlapped weakly with Cav-1 and Flt-1. Given these results, we investigated whether Cav-1 directly interacted with NS3. Cav-1 and NS3 co-immunoprecipitated, indicating that they resided within the same complex. Furthermore, when cellular cholesterol was depleted by methyl-beta cyclodextrin treatment after DENV entrance, lipid rafts were disrupted, NS3 protein level was reduced, besides Cav-1 and NS3 were displaced to fractions 9 and 10 in sucrose gradient analysis, and we observed a dramatically reduction of DENV particles release. These data demonstrate the essential role of caveolar cholesterol-rich lipid raft microdomains in DENV polyprotein processing and replication during the late stages of the DENV life cycle.
Collapse
Affiliation(s)
- Julio García Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas IPN, México City, México
| | - Moisés León Juárez
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
| | | | - Leticia Cedillo Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- * E-mail: (BGC); (LCB)
| | - Benito Gutiérrez Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, México
- * E-mail: (BGC); (LCB)
| |
Collapse
|
16
|
Zhang WZ. An association of metabolic syndrome constellation with cellular membrane caveolae. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2014; 4:23866. [PMID: 24563731 PMCID: PMC3926988 DOI: 10.3402/pba.v4.23866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/19/2023]
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that can predispose an individual to a greater risk of developing type-2 diabetes and cardiovascular diseases. The cluster includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia - all of which are risk factors to public health. While searching for a link among the aforementioned malaises, clues have been focused on the cell membrane domain caveolae, wherein the MetS-associated active molecules are colocalized and interacted with to carry out designated biological activities. Caveola disarray could induce all of those individual metabolic abnormalities to be present in animal models and humans, providing a new target for therapeutic strategy in the management of MetS.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- CMP Laboratory, Port Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|