1
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
2
|
Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021; 9:802766. [PMID: 35004621 PMCID: PMC8733332 DOI: 10.3389/fchem.2021.802766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing COVID-19/Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) pandemic has become a significant threat to public health and has hugely impacted societies globally. Targeting conserved SARS-CoV-2 RNA structures and sequences essential for viral genome translation is a novel approach to inhibit viral infection and progression. This new pharmacological modality compasses two classes of RNA-targeting molecules: 1) synthetic small molecules that recognize secondary or tertiary RNA structures and 2) antisense oligonucleotides (ASOs) that recognize the RNA primary sequence. These molecules can also serve as a "bait" fragment in RNA degrading chimeras to eliminate the viral RNA genome. This new type of chimeric RNA degrader is recently named ribonuclease targeting chimera or RIBOTAC. This review paper summarizes the sequence conservation in SARS-CoV-2 and the current development of RNA-targeting molecules to combat this virus. These RNA-binding molecules will also serve as an emerging class of antiviral drug candidates that might pivot to address future viral outbreaks.
Collapse
Affiliation(s)
| | | | | | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Zhao J, Qiu J, Aryal S, Hackett JL, Wang J. The RNA Architecture of the SARS-CoV-2 3'-Untranslated Region. Viruses 2020; 12:E1473. [PMID: 33371200 PMCID: PMC7766253 DOI: 10.3390/v12121473] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3' untranslated region (UTR) of this β-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3' UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3' UTRs in the infectious virions and the minigene-transfected cells are almost identical.
Collapse
Affiliation(s)
- Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA; (J.Z.); (S.A.)
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas, KS 66160, USA;
| | - Sadikshya Aryal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA; (J.Z.); (S.A.)
| | | | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA; (J.Z.); (S.A.)
| |
Collapse
|
5
|
Ziv O, Price J, Shalamova L, Kamenova T, Goodfellow I, Weber F, Miska EA. The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. Mol Cell 2020; 80:1067-1077.e5. [PMID: 33259809 PMCID: PMC7643667 DOI: 10.1016/j.molcel.2020.11.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/05/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.
Collapse
Affiliation(s)
- Omer Ziv
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | - Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany
| | - Tsveta Kamenova
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany.
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
6
|
Ryder SP, Morgan BR, Massi F. Analysis of Rapidly Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577650 DOI: 10.1101/2020.05.27.120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two cohorts of SARS-CoV-2 genomic sequences to identify rapidly emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, twenty variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5'UTR, including a set of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-stable molecular switch in the 3'UTR. Finally, five variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M stem loop, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. This analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences, as rapidly emerging variations in these regions could lead to drug resistance.
Collapse
|
7
|
Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5'- and 3'-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis. FEBS J 2019; 286:3222-3239. [PMID: 31034708 PMCID: PMC7164124 DOI: 10.1111/febs.14863] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 12/28/2022]
Abstract
Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.
Collapse
Affiliation(s)
- Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
9
|
Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation. PLoS One 2016; 11:e0165077. [PMID: 27760233 PMCID: PMC5070815 DOI: 10.1371/journal.pone.0165077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation.
Collapse
|
10
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
11
|
Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res 2015; 206:120-33. [PMID: 25736566 PMCID: PMC4476908 DOI: 10.1016/j.virusres.2015.02.025] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/19/2023]
Abstract
Coronaviruses (CoVs) are an important cause of illness in humans and animals. Most human coronaviruses commonly cause relatively mild respiratory illnesses; however two zoonotic coronaviruses, SARS-CoV and MERS-CoV, can cause severe illness and death. Investigations over the past 35 years have illuminated many aspects of coronavirus replication. The focus of this review is the functional analysis of conserved RNA secondary structures in the 5' and 3' of the betacoronavirus genomes. The 5' 350 nucleotides folds into a set of RNA secondary structures which are well conserved, and reverse genetic studies indicate that these structures play an important role in the discontinuous synthesis of subgenomic RNAs in the betacoronaviruses. These cis-acting elements extend 3' of the 5'UTR into ORF1a. The 3'UTR is similarly conserved and contains all of the cis-acting sequences necessary for viral replication. Two competing conformations near the 5' end of the 3'UTR have been shown to make up a potential molecular switch. There is some evidence that an association between the 3' and 5'UTRs is necessary for subgenomic RNA synthesis, but the basis for this association is not yet clear. A number of host RNA proteins have been shown to bind to the 5' and 3' cis-acting regions, but the significance of these in viral replication is not clear. Two viral proteins have been identified as binding to the 5' cis-acting region, nsp1 and N protein. A genetic interaction between nsp8 and nsp9 and the region of the 3'UTR that contains the putative molecular switch suggests that these two proteins bind to this region.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology & Biochemistry, The University of Tennessee Health Science Center College of Medicine, Memphis, TN 38163, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, College Station, TX 77843-1114, USA.
| |
Collapse
|
12
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
13
|
Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus. Viruses 2014; 6:2938-59. [PMID: 25080125 PMCID: PMC4147681 DOI: 10.3390/v6082938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (−)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (−)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (−)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−)-strand sgmRNA. (3) Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (−1) of sgmRNA 7 is correlated to the efficiency of (−)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−)-strand sgmRNA synthesis in BCoV.
Collapse
|