1
|
Ikeda T, Yue Y, Shimizu R, Nasser H. Potential Utilization of APOBEC3-Mediated Mutagenesis for an HIV-1 Functional Cure. Front Microbiol 2021; 12:686357. [PMID: 34211449 PMCID: PMC8239295 DOI: 10.3389/fmicb.2021.686357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The introduction of combination antiretroviral therapy (cART) has managed to control the replication of human immunodeficiency virus type 1 (HIV-1) in infected patients. However, a complete HIV-1 cure, including a functional cure for or eradication of HIV-1, has yet to be achieved because of the persistence of latent HIV-1 reservoirs in adherent patients. The primary source of these viral reservoirs is integrated proviral DNA in CD4+ T cells and other non-T cells. Although a small fraction of this proviral DNA is replication-competent and contributes to viral rebound after the cessation of cART, >90% of latent viral reservoirs are replication-defective and some contain high rates of G-to-A mutations in proviral DNA. At least in part, these high rates of G-to-A mutations arise from the APOBEC3 (A3) family proteins of cytosine deaminases. A general model has shown that the HIV-1 virus infectivity factor (Vif) degrades A3 family proteins by proteasome-mediated pathways and inactivates their antiviral activities. However, Vif does not fully counteract the HIV-1 restriction activity of A3 family proteins in vivo, as indicated by observations of A3-mediated G-to-A hypermutation in the proviral DNA of HIV-1-infected patients. The frequency of A3-mediated hypermutation potentially contributes to slower HIV-1/AIDS disease progression and virus evolution including the emergence of cytotoxic T lymphocyte escape mutants. Therefore, combined with other strategies, the manipulation of A3-mediated mutagenesis may contribute to an HIV-1 functional cure aimed at cART-free remission. In this mini-review, we discuss the possibility of an HIV-1 functional cure arising from manipulation of A3 mutagenic activity.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuan Yue
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Gibson KM, Steiner MC, Rentia U, Bendall ML, Pérez-Losada M, Crandall KA. Validation of Variant Assembly Using HAPHPIPE with Next-Generation Sequence Data from Viruses. Viruses 2020; 12:E758. [PMID: 32674515 PMCID: PMC7412389 DOI: 10.3390/v12070758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Next-generation sequencing (NGS) offers a powerful opportunity to identify low-abundance, intra-host viral sequence variants, yet the focus of many bioinformatic tools on consensus sequence construction has precluded a thorough analysis of intra-host diversity. To take full advantage of the resolution of NGS data, we developed HAplotype PHylodynamics PIPEline (HAPHPIPE), an open-source tool for the de novo and reference-based assembly of viral NGS data, with both consensus sequence assembly and a focus on the quantification of intra-host variation through haplotype reconstruction. We validate and compare the consensus sequence assembly methods of HAPHPIPE to those of two alternative software packages, HyDRA and Geneious, using simulated HIV and empirical HIV, HCV, and SARS-CoV-2 datasets. Our validation methods included read mapping, genetic distance, and genetic diversity metrics. In simulated NGS data, HAPHPIPE generated pol consensus sequences significantly closer to the true consensus sequence than those produced by HyDRA and Geneious and performed comparably to Geneious for HIV gp120 sequences. Furthermore, using empirical data from multiple viruses, we demonstrate that HAPHPIPE can analyze larger sequence datasets due to its greater computational speed. Therefore, we contend that HAPHPIPE provides a more user-friendly platform for users with and without bioinformatics experience to implement current best practices for viral NGS assembly than other currently available options.
Collapse
Affiliation(s)
- Keylie M. Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
| | - Margaret C. Steiner
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
| | - Uzma Rentia
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
| | - Matthew L. Bendall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4169-007 Vairão, Portugal
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (M.C.S.); (U.R.); (M.L.B.); (M.P.-L.); (K.A.C.)
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Villanova F, Barreiros M, Leal É. Is the tryptophan codon of gene vif the Achilles' heel of HIV-1? PLoS One 2020; 15:e0225563. [PMID: 32570272 PMCID: PMC7308096 DOI: 10.1371/journal.pone.0225563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/05/2020] [Indexed: 12/04/2022] Open
Abstract
To evaluate the impact of hypermutation on the HIV-1 dissemination at the population level we studied 7072 sequences HIV-1 gene vif retrieved from the public databank. From this dataset 854 sequences were selected because they had associated values of CD4+ T lymphocytes counts and viral loads and they were used to assess the correlation between clinical parameters and hypermutation. We found that the frequency of stop codons at sites 5, 11 and 79 ranged from 2.8x10-4 to 4.2x10-4. On the other hand, at codons 21, 38, 70, 89 and 174 the frequency of stop codons ranged from 1.4x10-3 to 2.5x10-3. We also found a correlation between clinical parameters and hypermutation where patients harboring proviruses with one or more stop codons at the tryptophan sites of the gene vif had higher CD4+ T lymphocytes counts and lower viral loads compared to the population. Our findings indicate that A3 activity potentially restrains HIV-1 replication because individuals with hypermutated proviruses tend to have lower numbers of RNA copies. However, owing to the low frequency of hypermutated sequences observed in the databank (44 out of 7072), it is unlikely that A3 has a significant impact to curb HIV-1 dissemination at the population level.
Collapse
Affiliation(s)
- Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marta Barreiros
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
4
|
Colson P, Dhiver C, Tamalet C, Delerce J, Glazunova OO, Gaudin M, Levasseur A, Raoult D. Full-length title: Dramatic HIV DNA degradation associated with spontaneous HIV suppression and disease-free outcome in a young seropositive woman following her infection. Sci Rep 2020; 10:2548. [PMID: 32054885 PMCID: PMC7018955 DOI: 10.1038/s41598-020-58969-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Strategies to cure HIV-infected patients by virus-targeting drugs have failed to date. We identified a HIV-1-seropositive woman who spontaneously suppressed HIV replication and had normal CD4-cell counts, no HIV-disease, no replication-competent virus and no cell HIV DNA detected with a routine assay. We suspected that dramatic HIV DNA degradation occurred post-infection. We performed multiple nested-PCRs followed by Sanger sequencing and applied a multiplex-PCR approach. Furthermore, we implemented a new technique based on two hybridization steps on beads prior to next-generation sequencing that removed human DNA then retrieved integrated HIV sequences with HIV-specific probes. We assembled ≈45% of the HIV genome and further analyzed the G-to-A mutations putatively generated by cellular APOBEC3 enzymes that can change tryptophan codons into stop codons. We found more G-to-A mutations in the HIV DNA from the woman than in that of her transmitting partner. Moreover, 74% of the tryptophan codons were changed to stop codons (25%) or were deleted as a possible consequence of gene inactivation. Finally, we found that this woman's cells remained HIV-susceptible in vitro. Our findings show that she does not exhibit innate HIV-resistance but may have been cured of it by extrinsic factors, a plausible candidate for which is the gut microbiota.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Catherine Dhiver
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Catherine Tamalet
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Olga O Glazunova
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Maxime Gaudin
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
5
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
6
|
Tumiotto C, Alves BM, Recordon-Pinson P, Jourdain M, Bellecave P, Guidicelli GL, Visentin J, Bonnet F, Hessamfar M, Neau D, Sanchez J, Brander C, Sajadi M, Eyzaguirre L, Soares EA, Routy JP, Soares MA, Fleury H. Provir/Latitude 45 study: A step towards a multi-epitopic CTL vaccine designed on archived HIV-1 DNA and according to dominant HLA I alleles. PLoS One 2019; 14:e0212347. [PMID: 30811489 PMCID: PMC6392325 DOI: 10.1371/journal.pone.0212347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/22/2019] [Indexed: 12/26/2022] Open
Abstract
One of the approaches by which the scientific community is seeking to cure HIV is the use of therapeutic vaccination. Previous studies have highlighted the importance of the virus-specific CD8+ T cell cytotoxic responses for the immune control of HIV and have oriented research on vaccine constructs based on CTL epitopes from circulating HIV-1 strains. The clinical trials with therapeutic vaccines to date have had limited success likely due to (i) a discrepancy between archived CTL epitopes in the viral reservoir and those in circulating viruses before antiretroviral therapy (ART) initiation and (ii) the lack of strong affinity between the selected CTL epitopes and the HLA grooves for presentation to CD8+ cells. To overcome these limitations, we launched the Provir/Latitude 45 study to identify conserved CTL epitopes in archived HIV-1 DNA according to the HLA class I alleles of aviremic patients, most of whom are under ART. The near full-length genomes or Gag, Pol and Nef regions of proviral DNA were sequenced by Sanger and/or Next Generation Sequencing (NGS). The HLA-A and B alleles were defined by NGS or molecular analysis. The TuTuGenetics software, which moves a sliding window of 8 to 10 amino acids through the amino acid alignment, was combined with the Immune Epitope Data Base (IEDB) to automatically calculate the theoretical binding affinity of identified epitopes to the HLA alleles for each individual. We identified 15 conserved epitopes in Pol (11), Gag (3), and Nef (1) according to their potential presentation by the dominant HLA-A and B alleles and now propose to use the corresponding conserved peptides in a multi-epitopic vaccine (HLA-fitted VAC, HFVAC).
Collapse
Affiliation(s)
- Camille Tumiotto
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
| | | | | | - Marine Jourdain
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
| | | | | | | | - Fabrice Bonnet
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
| | - Mojdan Hessamfar
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
| | - Didier Neau
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
| | - Jorge Sanchez
- Centro de Investigationes Technologicas, Biomedicas y Madioambiantales, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- Central University of Catalonia, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Mohammad Sajadi
- Institute of Human Virology, Baltimore, MD, United States of America
| | | | | | | | | | - Hervé Fleury
- University Hospital of Bordeaux, CNRS UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
7
|
Mohammadzadeh N, Follack TB, Love RP, Stewart K, Sanche S, Chelico L. Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology 2018; 527:21-31. [PMID: 30448640 DOI: 10.1016/j.virol.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Kris Stewart
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan Infectious Disease Care Network, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Stephen Sanche
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
8
|
Novitsky V, Gaolathe T, Mmalane M, Moyo S, Chakalisa U, Yankinda EK, Marukutira T, Holme MP, Sekoto T, Gaseitsiwe S, Musonda R, van Widenfelt E, Powis KM, Khan N, Dryden-Peterson S, Bennett K, Wirth KE, Tchetgen ET, Bachanas P, Mills LA, Lebelonyane R, El-Halabi S, Makhema J, Lockman S, Essex M. Lack of Virological Suppression Among Young HIV-Positive Adults in Botswana. J Acquir Immune Defic Syndr 2018; 78:557-565. [PMID: 29771781 PMCID: PMC6069598 DOI: 10.1097/qai.0000000000001715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND HIV-1 RNA load is the best biological predictor of HIV transmission and treatment response. The rate of virologic suppression among key subpopulations can guide HIV prevention programs. METHODS The Botswana Combination Prevention Project performed a population-based household survey among adults in 30 communities in Botswana. Data collected included knowledge of HIV-positive status, antiretroviral therapy (ART) coverage, and virologic suppression (HIV-1 RNA ≤400 copies per milliliter). Individuals aged 16-29 years were considered young adults. RESULTS Among 552 young people living with HIV enrolled with RNA load data and ART status available, 51% (n = 279) had undetectable HIV-1 RNA, including 54% of young women and 32% of young men [sex prevalence ratio (PR): 0.53; 95% confidence interval (CI): 0.43 to 0.80; P < 0.001]. Compared with older adults (30-64 years old), young HIV-infected adults were significantly less likely to have undetectable HIV-1 RNA (PR: 0.65; 95% CI: 0.59 to 0.70; P < 0.0001), including both men (PR: 0.43; 95% CI: 0.34 to 0.56; P < 0.0001) and women (PR: 0.67; 95% CI: 0.62 to 0.74; P < 0.0001). Among a subset of people living with HIV receiving ART, young adults also were less likely to have undetectable HIV-1 RNA load than older adults (PR: 0.93; 95% CI: 0.90 to 0.95; P = <0.0001). Analysis of the care continuum revealed that inferior HIV diagnosis and suboptimal linkage to care are the primary reasons for low virologic suppression among young adults. CONCLUSIONS Young adults in Botswana are significantly less likely to have undetectable HIV-1 RNA load compared with older adults. In the era of broad scale-up of ART, interventions able to diagnose young adults living with HIV and link them to effective therapy are urgently needed.
Collapse
Affiliation(s)
- Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Mompati Mmalane
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Unoda Chakalisa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Tafireyi Marukutira
- Division of Global HIV/AIDS, Centers for Disease Control and Prevention, Gaborone, Botswana
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tumalano Sekoto
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Kathleen M Powis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Departments of Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Nealia Khan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Scott Dryden-Peterson
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - Kara Bennett
- Bennett Statistical Consulting, Inc, Ballston Lake, NY
| | - Kathleen E Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Pam Bachanas
- Division of Global HIV/AIDS, Centers for Disease Control and Prevention, Atlanta, GA
| | - Lisa A Mills
- Division of Global HIV/AIDS, Centers for Disease Control and Prevention, Gaborone, Botswana
| | | | - Shenaaz El-Halabi
- Ministry of Health and Wellness, Republic of Botswana, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - M Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
9
|
Abstract
: Among 3596 HIV-positive participants enrolled in the Botswana Combination Prevention Project who self-reported no prior antiretroviral (ARV) therapy use and were tested for viral load (n = 951; 27% of all participants), 136 (14%) had HIV-1 RNA less than 400 copies/ml. ARV drugs were detected in 52 (39%) of 134 participants tested. Adjusting for undisclosed ARV use increased the overall estimate of virally suppressed individuals on ARV therapy by 1.4% from 70.2 to 71.6%.
Collapse
|
10
|
Cano-Ortiz L, Maletich Junqueira D, Comerlato J, Zani A, Santos Costa C, Michel Roehe P, Franco AC. Absence of A3Z3-Related Hypermutations in the env and vif Proviral Genes in FIV Naturally Infected Cats. Viruses 2018; 10:v10060296. [PMID: 29857485 PMCID: PMC6024795 DOI: 10.3390/v10060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/16/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) proteins comprise an important family of restriction factors that produce hypermutations on proviral DNA and are able to limit virus replication. Vif, an accessory protein present in almost all lentiviruses, counteracts the antiviral A3 activity. Seven haplotypes of APOBEC3Z3 (A3Z3) were described in domestic cats (hap I–VII), and in-vitro studies have demonstrated that these proteins reduce infectivity of vif-defective feline immunodeficiency virus (FIV). Moreover, hap V is resistant to vif-mediated degradation. However, studies on the effect of A3Z3 in FIV-infected cats have not been developed. Here, the correlation between APOBEC A3Z3 haplotypes in domestic cats and the frequency of hypermutations in the FIV vif and env genes were assessed in a retrospective cohort study with 30 blood samples collected between 2012 and 2016 from naturally FIV-infected cats in Brazil. The vif and env sequences were analyzed and displayed low or undetectable levels of hypermutations, and could not be associated with any specific A3Z3 haplotype.
Collapse
Affiliation(s)
- Lucía Cano-Ortiz
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| | - Dennis Maletich Junqueira
- Health Science Department, UniRitter Laureate International Universities, Rua Orfanotrófio, 555, Alto Teresópolis, Porto Alegre, RS CEP 90840-440C, Brazil.
| | - Juliana Comerlato
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| | - André Zani
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| | - Cristina Santos Costa
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| | - Paulo Michel Roehe
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| | - Ana Cláudia Franco
- Virology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS CEP 90150-070, Brazil.
| |
Collapse
|
11
|
Novitsky V, Prague M, Moyo S, Gaolathe T, Mmalane M, Yankinda EK, Chakalisa U, Lebelonyane R, Khan N, Powis KM, Widenfelt E, Gaseitsiwe S, Dryden-Peterson SL, Holme MP, De Gruttola V, Bachanas P, Makhema J, Lockman S, Essex M. High HIV-1 RNA Among Newly Diagnosed People in Botswana. AIDS Res Hum Retroviruses 2018; 34:300-306. [PMID: 29214845 DOI: 10.1089/aid.2017.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 RNA level is strongly associated with HIV transmission risk. We sought to determine whether HIV-1 RNA level was associated with prior knowledge of HIV status among treatment-naive HIV-infected individuals in Botswana, a country with high rates of antiretroviral treatment (ART) coverage. This information may be helpful in targeting HIV diagnosis and treatment efforts in similar high HIV prevalence settings in a population-based survey. HIV-infected individuals were identified during a household survey performed in 30 communities across Botswana. ART-naive persons with detectable HIV-1 RNA (>400 copies/mL) were divided into two groups, newly diagnosed and individuals tested in the past who knew about their HIV infection at the time of household visit, but had not taken ART. Levels of HIV-1 RNA were compared between groups, overall and by age and gender. Among 815 HIV-infected ART-naive persons with detectable virus, newly diagnosed individuals had higher levels of HIV-1 RNA (n = 490, median HIV-1 RNA 4.35, interquartile range (IQR) 3.79-4.91 log10 copies/mL) than those who knew about their HIV-positive status (n = 325, median HIV-1 RNA 4.10, IQR 3.55-4.68 log10 copies/mL; p values <.001, but p value = .011 after adjusting for age and gender). A nonsignificant trend for higher HIV-1 RNA was found among newly diagnosed men 30 years of age or older (median HIV-1 RNA 4.58, IQR 4.07-5.02 log10 copies/mL vs. 4.17, 3.61-4.71 log10 copies/mL). Newly diagnosed individuals have elevated levels of HIV-1 RNA. This study highlights the need for early diagnosis and treatment of HIV infection for purposes of HIV epidemic control, even in a setting with high ART coverage.
Collapse
Affiliation(s)
- Vladimir Novitsky
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Melanie Prague
- 3 Department of Biostatistics, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
- 4 Inria, Inserm U1219, Statistics In System Biology and Translational Medicine-SISTM, University of Bordeaux, Talence, France
| | - Sikhulile Moyo
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 5 Division of Medical Virology, Faculty of Medicine and Health Sciences, University of Stellenbosch , Tygerberg, South Africa
| | | | | | | | | | | | - Nealia Khan
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Kathleen M Powis
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
- 7 Departments of Medicine and Pediatrics, Massachusetts General Hospital , Boston, Massachusetts
| | - Erik Widenfelt
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Simani Gaseitsiwe
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Scott L Dryden-Peterson
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
- 8 Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Molly Pretorius Holme
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Victor De Gruttola
- 3 Department of Biostatistics, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Pam Bachanas
- 9 Division of Global HIV and TB, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Joseph Makhema
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| | - Shahin Lockman
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
- 8 Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - M Essex
- 1 Botswana Harvard AIDS Institute , Gaborone, Botswana
- 2 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| |
Collapse
|
12
|
Benito JM, Hillung J, Restrepo C, Cuevas JM, León A, Ruiz-Mateos E, Palacios-Muñoz R, Górgolas M, Sanjuán R, Rallón N. Role of APOBEC3H in the Viral Control of HIV Elite Controller Patients. Int J Med Sci 2018; 15:95-100. [PMID: 29333092 PMCID: PMC5765721 DOI: 10.7150/ijms.22317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/05/2022] Open
Abstract
Background APOBEC3H (A3H) gene presents variation at 2 positions (rs139297 and rs79323350) leading to a non-functional protein. So far, there is no information on the role played by A3H in spontaneous control of HIV. The aim of this study was to evaluate the A3H polymorphisms distribution in a well-characterized group of Elite Controller (EC) subjects. Methods We analyzed the genotype distribution of two different SNPs (rs139297 and rs79323350) of A3H in 30 EC patients and compared with 11 non-controller (NC) HIV patients. Genotyping was performed by PCR, cloning and Sanger sequencing. Both polymorphisms were analyzed jointly in order to adequately attribute the active or inactive status of A3H protein. Results EC subjects included in this study were able to maintain a long-term sustained spontaneous HIV-viral control and optimal CD4-T-cell counts; however, haplotypes leading to an active protein were very poorly represented in these patients. We found that the majority of EC subjects (23/30; 77%) presented allelic combinations leading to an inactive A3H protein, a frequency slightly lower than that observed for NC studied patients (10/11; 91%). Conclusions The high prevalence of non-functional protein coding-genotypes in EC subjects seems to indicate that other innate restriction factors different from APOBEC3H could be implicated in the replication control exhibited by these subjects.
Collapse
Affiliation(s)
- José M Benito
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Julia Hillung
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain.,Departament de Genètica, Universitat de València, València, Spain
| | - Agathe León
- Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain.,Departament de Genètica, Universitat de València, València, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
13
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
14
|
Okada A, Iwatani Y. APOBEC3G-Mediated G-to-A Hypermutation of the HIV-1 Genome: The Missing Link in Antiviral Molecular Mechanisms. Front Microbiol 2016; 7:2027. [PMID: 28066353 PMCID: PMC5165236 DOI: 10.3389/fmicb.2016.02027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
APOBEC3G (A3G) is a member of the cellular polynucleotide cytidine deaminases, which catalyze the deamination of cytosine (dC) to uracil (dU) in single-stranded DNA. These enzymes potently inhibit the replication of a variety of retroviruses and retrotransposons, including HIV-1. A3G is incorporated into vif-deficient HIV-1 virions and targets viral reverse transcripts, particularly minus-stranded DNA products, in newly infected cells. It is well established that the enzymatic activity of A3G is closely correlated with the potential to greatly inhibit HIV-1 replication in the absence of Vif. However, the details of the underlying molecular mechanisms are not fully understood. One potential mechanism of A3G antiviral activity is that the A3G-dependent deamination may trigger degradation of the dU-containing reverse transcripts by cellular uracil DNA glycosylases (UDGs). More recently, another mechanism has been suggested, in which the virion-incorporated A3G generates lethal levels of the G-to-A hypermutation in the viral DNA genome, thus potentially driving the viruses into “error catastrophe” mode. In this mini review article, we summarize the deaminase-dependent and deaminase-independent molecular mechanisms of A3G and discuss how A3G-mediated deamination is linked to antiviral mechanisms.
Collapse
Affiliation(s)
- Ayaka Okada
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of AIDS Research, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
15
|
Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation. PLoS Pathog 2016; 12:e1005646. [PMID: 27186986 PMCID: PMC4871359 DOI: 10.1371/journal.ppat.1005646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
16
|
Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels. J Virol 2016; 90:4563-4578. [PMID: 26912631 DOI: 10.1128/jvi.02939-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving forces behind mutual evolution. The interplay of cellular APOBEC3G and viral Vif proteins is a typical example. Here, we demonstrate that naturally occurring single-nucleotide variations in the proximal region of splicing acceptor 1 (SA1prox) of the HIV-1 genome frequently alter Vif expression levels, thereby modulating viral replication potential in cells with various ABOBEC3G levels. The results of the present study reveal a previously unidentified and important way for HIV-1 to compete with APOBEC3G restriction by regulating its Vif expression levels. We propose that SA1prox plays a regulatory role in Vif counteraction against APOBEC3G in order to contribute to HIV-1 replication and evolution, and this may be applicable to other primate lentiviruses.
Collapse
|
17
|
Tamalet C, Colson P, Decroly E, Dhiver C, Ravaux I, Stein A, Raoult D. Reevaluation of possible outcomes of infections with human immunodeficiency virus. Clin Microbiol Infect 2016; 22:299-311. [PMID: 26794031 DOI: 10.1016/j.cmi.2015.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/15/2015] [Accepted: 11/21/2015] [Indexed: 02/05/2023]
Abstract
Several lines of evidence indicate that HIV infection can result in several possible incomes, including a very small proportion of individuals whose HIV replication is controlled after treatment interruption (known as HIV posttreatment controllers) or spontaneously without any treatment (known as HIV elite controllers). Both types of individuals are HIV RNA negative but HIV DNA positive, with living virus which can be stimulated ex vivo. A review was conducted to assess the literature on yet rarer cases with detectable integrated HIV DNA without HIV infectious virus in HIV-seropositive or -negative individuals. Three categories of patients were identified: (a) HIV-seropositive individuals with apparent spontaneous cure from their HIV infection, (b) HIV-seronegative children born to HIV-infected mothers and (c) highly exposed seronegative adults. Validity criteria were proposed to assess the presence of integrated HIV DNA as possible or unquestionable in these three categories. Only three articles among the 22 ultimately selected fulfilled these criteria. Among the highly exposed seronegative subjects, some individuals were described as being without integrated HIV DNA, probably because these subjects were not investigated using relevant, highly sensitive methods. Finally, we propose a definition of spontaneous cure of HIV infection based on clinical, immunologic and virologic criteria.
Collapse
Affiliation(s)
- C Tamalet
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, France
| | - P Colson
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, France
| | - E Decroly
- Aix-Marseille University, CNRS AFMB Laboratory, UMR 7257, Case 925, France
| | - C Dhiver
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service des Maladies Infectieuses, Hôpital Conception, Marseille, France
| | - I Ravaux
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service des Maladies Infectieuses, Hôpital Conception, Marseille, France
| | - A Stein
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service des Maladies Infectieuses, Hôpital Conception, Marseille, France
| | - D Raoult
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, France; Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, France.
| |
Collapse
|
18
|
Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13:e1002251. [PMID: 26375597 PMCID: PMC4574155 DOI: 10.1371/journal.pbio.1002251] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10−3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis. The rate of spontaneous mutation of the HIV-1 genome within its human host is exceptionally high, is mostly driven by host cytidine deaminases, and probably plays a role in disease progression. The high levels of genetic diversity of the HIV-1 virus grant it the ability to escape the immune system, to rapidly evolve drug resistance, and to circumvent vaccination strategies. However, our knowledge of HIV-1 mutation rates has been largely restricted to in vitro and cell culture studies because of the inherent complexity of measuring these rates in vivo. Here, by analyzing the frequency of premature stop codons, we show that the HIV-1 mutation rate in vivo is two orders of magnitude higher than that predicted by in vitro studies, making it the highest reported mutation rate for any biological system. A large component of this rate is from host cellular cytidine deaminases, which induce mutations in the viral DNA as a defense mechanism. While the HIV-1 genome is hypermutated in blood cells, only a very small fraction of these mutations reach the plasma, indicating that many viruses are defective as a result of the extremely high mutation load. In addition, we find that the HIV-1 mutation rate tends to be higher in patients showing normal disease progression than in those undergoing rapid progression, emphasizing the negative impact on viral fitness of hypermutation by host cytidine deaminases. However, we also observe subpopulations of weakly-mutated viral genomes whose sequence diversity may influence viral pathogenesis. Our work highlights the fine balance for HIV-1 between enough mutation to evade host responses and too much mutation that can inactivate the virus.
Collapse
Affiliation(s)
- José M. Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - José López-Aldeguer
- Hospital Universitario La Fe, Valencia, Spain
- CoRIS and HIV Biobank, Spanish AIDS Research Network, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering. J Clin Microbiol 2015; 53:2581-92. [PMID: 26041893 DOI: 10.1128/jcm.00756-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838-3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective-the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)-and has the potential to enable the scale up of public health HIV prevention interventions.
Collapse
|
20
|
Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2. Clin Microbiol Infect 2015; 21:873.e1-9. [PMID: 26003280 DOI: 10.1016/j.cmi.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Clinical and subclinical genital herpes simplex virus type 2 (HSV-2) reactivations have been associated with increases in human immunodeficiency virus (HIV)-1 genital shedding. Whether HSV-2 shedding contributes to the selection of specific genital HIV-1 variants remains unknown. We evaluated the genetic diversity of genital and blood HIV-1 RNA and DNA in 14 HIV-1/HSV-2-co-infected women, including seven with HSV-2 genital reactivation, and seven without as controls. HIV-1 DNA and HIV-1 RNA env V1-V3 sequences in paired blood and genital samples were compared. The HSV-2 selection pressure on HIV was estimated according to the number of synonymous substitutions (dS), the number of non-synonymous substitutions (dN) and the dS/dN ratio within HIV quasi-species. HIV-1 RNA levels in cervicovaginal secretions were higher in women with HSV-2 replication than in controls (p0.02). Plasma HIV-1 RNA and genital HIV-1 RNA and DNA were genetically compartmentalized. No differences in dS, dN and the dS/dN ratio were observed between the study groups for either genital HIV-1 RNA or plasma HIV-1 RNA. In contrast, dS and dN in genital HIV-1 DNA were significantly higher in patients with HSV-2 genital reactivation (p <0.01 and p <0.05, respectively). The mean of the dS/dN ratio in genital HIV-1 DNA was slightly higher in patients with HSV-2 genital replication, indicating a trend for purifying selection (p 0.056). HSV-2 increased the genetic diversity of genital HIV-1 DNA. These observations confirm molecular interactions between HSV-2 and HIV-1 at the genital tract level.
Collapse
|
21
|
High level of APOBEC3F/3G editing in HIV-2 DNA vif and pol sequences from antiretroviral-naive patients. AIDS 2015; 29:779-84. [PMID: 25985400 DOI: 10.1097/qad.0000000000000607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. METHODS Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. RESULTS Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). CONCLUSION We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.
Collapse
|
22
|
Colson P, Ravaux I, Tamalet C, Glazunova O, Baptiste E, Chabriere E, Wiedemann A, Lacabaratz C, Chefrour M, Picard C, Stein A, Levy Y, Raoult D. HIV infection en route to endogenization: two cases. Clin Microbiol Infect 2014; 20:1280-8. [PMID: 25366539 PMCID: PMC4360783 DOI: 10.1111/1469-0691.12807] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
The long-term spontaneous evolution of humans and the human immunodeficiency virus (HIV) is not well characterized; many vertebrate species, including humans, exhibit remnants of other retroviruses in their genomes that question such possible endogenization of HIV. We investigated two HIV-infected patients with no HIV-related disease and no detection with routine tests of plasma HIV RNA or cell-associated HIV DNA. We used Sanger and deep sequencing to retrieve HIV DNA sequences integrated in the human genome and tested the host humoral and cellular immune responses. We noticed that viruses from both patients were inactivated by the high prevalence of the transformation of tryptophan codons into stop codons (25% overall (3-100% per gene) and 24% overall (0-50% per gene)). In contrast, the humoral and/or cellular responses were strong for one patient and moderate for the other, indicating that a productive infection occurred at one stage of the infection. We speculate that the stimulation of APOBEC, the enzyme group that exchanges G for A in viral nucleic acids and is usually inhibited by the HIV protein Vif, has been amplified and made effective from the initial stage of the infection. Furthermore, we propose that a cure for HIV may occur through HIV endogenization in humans, as observed for many other retroviruses in mammals, rather than clearance of all traces of HIV from human cells, which defines viral eradication.
Collapse
Affiliation(s)
- P Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille, France; Fondation Institut Hospitalo-Universitaire (IHU) MéiterranéInfection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Armitage AE, Deforche K, Welch JJ, Van Laethem K, Camacho R, Rambaut A, Iversen AKN. Possible footprints of APOBEC3F and/or other APOBEC3 deaminases, but not APOBEC3G, on HIV-1 from patients with acute/early and chronic infections. J Virol 2014; 88:12882-94. [PMID: 25165112 PMCID: PMC4248940 DOI: 10.1128/jvi.01460-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Members of the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sublethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3 activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies, since a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined "footprints" of APOBEC3G and APOBEC3F activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. In contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sublethal mutations that might facilitate viral diversification. Therefore, Vif-specific cytotoxic T lymphocyte (CTL) responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3 family.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kristel Van Laethem
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ricardo Camacho
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrew Rambaut
- Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom
| | - Astrid K N Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
24
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
25
|
Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS 2014; 28:1091-9. [PMID: 24492253 DOI: 10.1097/qad.0000000000000223] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Determining the precise lifespan of human T-cell is challenging due to the inability of standard techniques to distinguish between dividing and dying cells. Here, we measured the lifespan of a pool of T cells that were derived from a single cell 'naturally' labelled with a single integrated clone of a replication-incompetent HIV-1 provirus. DESIGN/METHODS Utilizing a combination of techniques, we were able to sequence/map an integration site of a unique provirus with a stop codon at position 42 of the HIV-1 protease. In-vitro reconstruction of this provirus into an infectious clone confirmed its inability to replicate. By combining cell separation and integration site-specific PCR, we were able to follow the fate of this single provirus in multiple T-cell subsets over a 20-year period. As controls, a number of additional integrated proviruses were also sequenced. RESULTS The replication-incompetent HIV-1 provirus was solely contained in the pool of effector memory CD4 T cells for 17 years. The percentage of the total effector memory CD4 T cells containing the replication-incompetent provirus peaked at 1% with a functional half-life of 11.1 months. In the process of sequencing multiple proviruses, we also observed high levels of lethal mutations in the peripheral blood pool of proviruses. CONCLUSION These data indicate that human effector memory CD4 T cells are able to persist in vivo for more than 17 years without detectably reverting to a central memory phenotype. A secondary observation is that the fraction of the pool of integrated HIV-1 proviruses capable of replicating may be considerably less than the 12% currently noted in the literature.
Collapse
|
26
|
Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220-45. [PMID: 24189052 PMCID: PMC3943811 DOI: 10.1016/j.jmb.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Ryan C Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - DongFei Qi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|