1
|
Medrano RFV, Salles TA, Dariolli R, Antunes F, Feitosa VA, Hunger A, Catani JPP, Mendonça SA, Tamura RE, Lana MG, Rodrigues EG, Strauss BE. Potentiation of combined p19Arf and interferon-beta cancer gene therapy through its association with doxorubicin chemotherapy. Sci Rep 2022; 12:13636. [PMID: 35948616 PMCID: PMC9365852 DOI: 10.1038/s41598-022-17775-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/30/2022] [Indexed: 11/11/2022] Open
Abstract
Balancing safety and efficacy is a major consideration for cancer treatments, especially when combining cancer immunotherapy with other treatment modalities such as chemotherapy. Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct cell killing as well as activation of an antitumor immune response. We have developed a gene therapy approach based on p19Arf and interferon-β gene transfer that, similar to conventional inducers of ICD, results in the release of DAMPS and immune activation. Here, aiming to potentiate this response, we explore whether association between our approach and treatment with doxorubicin (Dox), a known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, a critical side effect of Dox. Using central composite rotational design analysis, we show that cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted the application of reduced viral and drug doses. The treatments also cooperated to induce elevated levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/interferon-β gene transfer and Dox chemotherapy potentiated antitumor response and minimized cardiotoxicity.
Collapse
Affiliation(s)
- Ruan F V Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thiago A Salles
- Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, FM-USP, São Paulo, SP, Brazil
| | - Rafael Dariolli
- Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, FM-USP, São Paulo, SP, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fernanda Antunes
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil
| | - Valker A Feitosa
- Núcleo de Bionanomanufatura, Instituto de Pesquisas Tecnológicas (Bionano-IPT), São Paulo, SP, Brazil.,Faculdade de Ciências Farmaceuticas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil
| | - Aline Hunger
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Cristalia, Biotecnologia Unidade 1, Rodoviária SP 147, Itapira, SP, Brazil
| | - João P P Catani
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Vlaams Instituut Voor Biotenchnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Samir A Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rodrigo E Tamura
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Marlous G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.
| |
Collapse
|
2
|
Peroni LA, Toscaro JM, Canateli C, Tonoli CCC, de Olivera RR, Benedetti CE, Coimbra LD, Pereira AB, Marques RE, Proença-Modena JL, Lima GC, Viana R, Borges JB, Lin-Wang HT, Abboud CS, Gun C, Franchini KG, Bajgelman MC. Serological Testing for COVID-19, Immunological Surveillance, and Exploration of Protective Antibodies. Front Immunol 2021; 12:635701. [PMID: 34489923 PMCID: PMC8417107 DOI: 10.3389/fimmu.2021.635701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Serological testing is a powerful tool in epidemiological studies for understanding viral circulation and assessing the effectiveness of virus control measures, as is the case of SARS-CoV-2, the pathogenic agent of COVID-19. Immunoassays can quantitatively reveal the concentration of antiviral antibodies. The assessment of antiviral antibody titers may provide information on virus exposure, and changes in IgG levels are also indicative of a reduction in viral circulation. In this work, we describe a serological study for the evaluation of antiviral IgG and IgM antibodies and their correlation with antiviral activity. The serological assay for IgG detection used two SARS-CoV-2 proteins as antigens, the nucleocapsid N protein and the 3CL protease. Cross-reactivity tests in animals have shown high selectivity for detection of antiviral antibodies, using both the N and 3CL antigens. Using samples of human serum from individuals previously diagnosed by PCR for COVID-19, we observed high sensitivity of the ELISA assay. Serological results with human samples also suggest that the combination of higher titers of antiviral IgG antibodies to different antigen targets may be associated with greater neutralization activity, which can be enhanced in the presence of antiviral IgM antibodies.
Collapse
Affiliation(s)
- Luis A. Peroni
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Jessica M. Toscaro
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Celisa C. C. Tonoli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata R. de Olivera
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Celso E. Benedetti
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Lais D. Coimbra
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Alexandre Borin Pereira
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - José L. Proença-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| | - Gabriel C. Lima
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Molecular Sciences Undergrad Program, University of São Paulo, São Paulo, Brazil
| | - Renata Viana
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Jessica B. Borges
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Cely S. Abboud
- Infectious Diseases Section and Hospital Infection Control Committee, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Carlos Gun
- Research Division, Dante Pazzanese Cardiology Institute, São Paulo, Brazil
| | - Kleber G. Franchini
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
- Medical School, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth. Gene Ther 2019; 27:15-26. [PMID: 30926960 DOI: 10.1038/s41434-019-0071-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 01/19/2023]
Abstract
For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.
Collapse
|
4
|
Vieira IDL, Tamura RE, Hunger A, Strauss BE. Distinct Roles of Direct Transduction Versus Exposure to the Tumor Secretome on Murine Endothelial Cells After Melanoma Gene Therapy with Interferon-β and p19Arf. J Interferon Cytokine Res 2019; 39:246-258. [PMID: 30848981 DOI: 10.1089/jir.2018.0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor vasculature plays a central role in tumor progression, making it an attractive therapeutic target. In this study, we explore the antiangiogenic potential of our melanoma gene therapy approach combining interferon β (IFNβ) and p19Arf gene transfer. Since these proteins are modulators of tumor vasculature, we explore the impact of IFNβ and p19Arf gene transfer on murine endothelial cells (tEnd). Adenovirus-mediated gene transfer of p19Arf to tEnd cells inhibited proliferation, tube formation, migration, and led to increased expression of genes related to the p53 cell death pathway, yet IFNβ gene transfer had no significant impact on tEnd viability. Alternatively, tEnd cells were exposed to the factors generated by transduced B16 (mouse melanoma) cells using either coculture or conditioned medium. In either case, transduction of B16 cells with the IFNβ vector, whether alone or in combination with p19Arf, resulted in endothelial cell death. Strikingly, treatment of tEnd cells with recombinant IFNβ did not induce death, demonstrating that additional factors produced by B16 cells contributed to the demise of tEnd cells. In this work, we have shown that our melanoma gene therapy strategy produces desirable negative effects on endothelial cells, possibly correlating with antiangiogenic activity.
Collapse
Affiliation(s)
- Igor de Luna Vieira
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rodrigo Esaki Tamura
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Aline Hunger
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Bryan E Strauss
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
6
|
Tamura RE, Hunger A, Fernandes DC, Laurindo FR, Costanzi-Strauss E, Strauss BE. Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector. Hum Gene Ther 2017; 28:639-653. [PMID: 28181816 DOI: 10.1089/hum.2016.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Aline Hunger
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Denise C Fernandes
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Francisco R Laurindo
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- 3 Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo , São Paulo, Brazil
| | - Bryan E Strauss
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
7
|
Tamura RE, da Silva Soares RB, Costanzi-Strauss E, Strauss BE. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy. Cancer Biol Ther 2016; 17:1221-1230. [PMID: 27646031 DOI: 10.1080/15384047.2016.1235655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alternative treatments for cancer using gene therapy approaches have shown promising results and some have even reached the marketplace. Even so, additional improvements are needed, such as employing a strategically chosen promoter to drive expression of the transgene in the target cell. Previously, we described viral vectors where high-level transgene expression was achieved using a p53-responsive promoter. Here we present an adenoviral vector (AdPGp53) where p53 is employed to regulate its own expression and which outperforms a traditional vector when tested in a model of gene therapy for prostate cancer. The functionality of AdPGp53 and AdCMVp53 were compared in human prostate carcinoma cell lines. AdPGp53 conferred greatly enhanced levels of p53 protein and induction of the p53 target gene, p21, as well as superior cell killing by a mechanism consistent with apoptosis. DU145 cells were susceptible to induction of death with AdPGp53, yet PC3 cells were quite resistant. Though AdCMVp53 was shown to be reliable, extremely high-level expression of p53 offered by AdPGp53 was necessary for tumor suppressor activity in PC3 and DU145. In situ gene therapy experiments revealed tumor inhibition and increased overall survival in response to AdPGp53, but not AdCMVp53. Upon histologic examination, only AdPGp53 treatment was correlated with the detection of both p53 and TUNEL-positive cells. This study points to the importance of improved vector performance for gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- a Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24 , Cancer Institute of São Paulo, School of Medicine, University of São Paulo , Brazil
| | - Rafael Bento da Silva Soares
- b Viral Vector Group, Laboratory of Genetics and Molecular Cardiology/LIM13 , Heart Institute, School of Medicine, University of São Paulo , Brazil
| | - Eugenia Costanzi-Strauss
- c Gene Therapy Laboratory, Department of Cell and Developmental Biology , Biomedical Sciences Institute, University of São Paulo , Brazil
| | - Bryan E Strauss
- a Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24 , Cancer Institute of São Paulo, School of Medicine, University of São Paulo , Brazil
| |
Collapse
|
8
|
Bajgelman MC, Dos Santos L, Silva GJJ, Nakamuta J, Sirvente RA, Chaves M, Krieger JE, Strauss BE. Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53. Virology 2014; 476:106-114. [PMID: 25543961 DOI: 10.1016/j.virol.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Here we present the application of our adeno-associated virus (AAV2) vector where transgene expression is driven by a synthetic, p53-responsive promoter, termed PG, used to supply human vascular endothelial growth factor-A165 (VEGF-A). Thus, p53 is harnessed to promote the beneficial expression of VEGF-A encoded by the AAVPG vector, bypassing the negative effect of p53 on HIF-1α which occurs during cardiac hypertrophy. Wistar rats were submitted to pressure overload induced by thoracic aorta coarctation (TAC) with or without concomitant gene therapy (intramuscular delivery in the left ventricle). After 12 weeks, rats receiving AAVPG-VEGF gene therapy were compared to those that did not, revealing significantly improved cardiac function under hemodynamic stress, lack of fibrosis and reversal of capillary rarefaction. With these functional assays, we have demonstrated that application of the AAVPG-VEGF vector under physiologic conditions known to stimulate p53 resulted in the preservation of cardiac performance.
Collapse
Affiliation(s)
- Marcio C Bajgelman
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leonardo Dos Santos
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo J J Silva
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Nakamuta
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Raquel A Sirvente
- Hypertension Unit, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcio Chaves
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|