1
|
Nikapitiya C, Wasana WP, Jayathilaka EHTT, Jayasinghe JNC, Lee J, De Zoysa M. Plasma-derived exosomes of Edwardsiella piscicida challenged olive flounder (Paralichthys olivaceus): Characterization and miRNA profiling for potential biomarkers screening. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110034. [PMID: 39571633 DOI: 10.1016/j.fsi.2024.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Exosomes are released from multiple cell types as part of their normal physiology as well as during acquired abnormalities. In this study, we investigated the effect of pathogenic Edwardsiella piscicida infection on olive flounder (Paralichthys olivaceus) exosomes at morphometric, physicochemical, and molecular levels. Unique cup-shaped exosomes were isolated from the plasma of non-infected (PBS-Exo) and E. piscicida experimentally challenged (Ep-Exo) olive flounder using ultracentrifugation. The average particle size, concentration, and zeta potential were 150.9 ± 6.9 nm, 5.67 × 1010 particles/mL, and -25.6 ± 1.36 mV for PBS-Exo while 138.7 ± 1.9 nm, 1.22 × 1011 particles/mL, and -35 ± 1.82 mV for Ep-Exo, respectively. Expression of tetraspanin markers (CD81, CD9, and CD63) confirmed the presence of olive flounder exosomes. Differentially expressed (DE) known (9) and novel (29) miRNAs (log2 fold change ≥1; p < 0.05) were identified in the Ep-Exo that could be potential as diagnostic biomarkers for the infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the predicted target genes of the DE miRNAs were highly enriched in metabolic and immune roles. Both PBS-Exo and Ep-Exo were non-toxic in vitro (up to 100 μg/mL) and in vivo (up to 400 μg/mL). Compared to the vehicle, PBS-Exo at 50 μg/mL induced Nf-kB (>1.50-fold) while at 100 μg/mL, Il8, Il10, Nf-kB, P53, and Inf were induced (>1.50-fold) in fathead minnow cells (FHMs). This suggests that the PBS-Exo contains molecules that moderately stimulate gene expression. In the future, validating the exact olive flounder immune response target genes that interact with DE miRNAs in Ep-Exo will be crucial for investigating the host-pathogen interactions, immune defense mechanisms, and therapeutic targets for olive flounder against E. piscicida infection.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Withanage Prasadini Wasana
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - J N C Jayasinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Dias MKHM, Jayathilaka EHTT, De Zoysa M. Isolation, characterization, and immunomodulatory effects of extracellular vesicles isolated from fish pathogenic Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109787. [PMID: 39047924 DOI: 10.1016/j.fsi.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are natural nanocarriers that have shown great potential for biomedical applications such as biomarkers, cancer therapy, immunomodulators, vaccines, wound healing, tissue engineering, and drug carriers. In the present study, BEVs were isolated from the gram-negative bacterium, Aeromonas hydrophila using the ultracentrifugation method and denoted as AhEVs. Using transmission electron microscopy imaging, we confirmed the ultrastructure and spherical shape morphology of AhEVs. Nanoparticle-tracking analysis results showed a mean particle size of 105.5 ± 2.0 nm for AhEVs. Moreover, the particle concentration of AhEVs was 2.34 ± 0.12 × 1011 particles/mL of bacterial supernatant. AhEV-treated fathead minnow (FHM) cells did not show cytotoxicity effects up to 50 μg/mL with no significant decrease in cells. Moreover, no mortality was observed in larval zebrafish up to 50 μg/mL which indicates that the AhEVs are biocompatible at this concentration. Furthermore, fluorescent-labeled AhEVs were internalized into FHM cells. Results of qRT-PCR analysis in FHM cells revealed that cellular pro-inflammatory cytokines such as nuclear factor (NF)-κB, interferon (Ifn), Irf7, interleukin (Il) 8, and Il11 were upregulated while downregulating the expression of anti-inflammatory Il10 in a concentration-dependent manner. AhEV-treated adult zebrafish (5 μg/fish) induced toll-like receptor (tlr) 2 and tlr4; tumor necrosis factor-alpha (tnfα); heat shock protein (hsp) 70; and il10, il6, and il1β in kidney. Protein expression of NF-κB p65 and Tnfα presented amplified levels in the spleen of AhEVs-treated zebrafish. Based on the collective findings, we conclude that AhEVs exhibited morphological and physicochemical characteristics to known EVs of gram (-)ve bacteria. At biocompatible concentrations, the immunomodulatory activity of AhEVs was demonstrated by inducing different immune response genes in FHM cells and zebrafish. Hence, we suggest that AhEVs could be a novel vaccine candidate in fish medicine due to their ability to elicit strong immune responses.
Collapse
Affiliation(s)
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Seegobin M, Logan SR, Emery RJN, Brunetti CR. Cytokinins Reduce Viral Replication and Alter Plaque Morphology of Frog Virus 3 In Vitro. Viruses 2024; 16:826. [PMID: 38932119 PMCID: PMC11209418 DOI: 10.3390/v16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.
Collapse
Affiliation(s)
| | | | | | - Craig R. Brunetti
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 0G2, Canada; (M.S.); (S.R.L.); (R.J.N.E.)
| |
Collapse
|
4
|
Dias MKHM, Jayathilaka EHTT, Edirisinghe SL, Lim JW, Nikapitiya C, Kang SY, Whang I, De Zoysa M. In-vitro immunomodulatory responses and antiviral activities of antimicrobial peptide octominin against fish pathogenic viruses. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109129. [PMID: 37777098 DOI: 10.1016/j.fsi.2023.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Antimicrobial peptides (AMPs) are considered a novel approach to stimulate fish antiviral mechanisms for defense against a broad range of viral infections by enhancing immunomodulatory activities. Octominin is an AMP derived from the defense proteins of Octopus minor. In this study, preliminary screening of octominin against viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV), and infectious pancreatic necrosis virus (IPNV) was carried out. Moreover, immune responses upon octominin treatment and IHNV challenge were investigated using fathead minnow (FHM) cells. The CC50s of octominin for FHM and Chinook salmon embryo-214 (CHSE-214) cells were 2146.2 and 1865.2 μg/mL, respectively. With octominin treatment, EC50 resulted in 732.8, 435.1, and 925.9 μg/mL for VHSV, IHNV, and IPNV, respectively. The selectivity indices were 2.9, 4.9, and 2.0, respectively. The transcriptional analysis results demonstrated the induced transcription factors (Irf3; 143-fold, Irf7; 105-fold, and NF-κB; 8-fold), stress response gene (HspB8; 2-fold), and apoptosis functional gene (p53; 3-fold) in octominin treated (500 μg/mL) FHM cells for 48 h. Moreover, IHNV viral copy number was slightly decreased with the octominin treatment (500 μg/mL) in FHM cells. Overall results suggest that octominin could be a potential antiviral agent, although further studies are necessary to understand its mode of action and the mechanism of its antiviral activity.
Collapse
Affiliation(s)
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shan Lakmal Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Seochun-gun, Chungchungnam-do, 33662, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Logan SR, Seegobin M, Emery RJN, Brunetti CR. Components of the Nucleotide Salvage Pathway Increase Frog Virus 3 (FV3) Replication. Viruses 2023; 15:1716. [PMID: 37632058 PMCID: PMC10460048 DOI: 10.3390/v15081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Viruses are obligate intracellular parasites that alter host metabolic machinery to obtain energy and macromolecules that are pivotal for replication. Ranavirus, including the type species of the genus frog virus 3 (FV3), represent an ecologically important group of viruses that infect fish, amphibians, and reptiles. It was established that fatty acid synthesis, glucose, and glutamine metabolism exert roles during iridovirus infections; however, no information exists regarding the role of purine metabolism. In this study, we assessed the impact of exogenously applied purines adenine, adenosine, adenosine 5'-monophosphate (AMP), inosine 5'-monophosphate (IMP), inosine, S-adenosyl-L-homocysteine (SAH), and S-adenosyl-L-methionine (SAM) on FV3 replication. We found that all compounds except for SAH increased FV3 replication in a dose-dependent manner. Of the purines investigated, adenine and adenosine produced the most robust response, increasing FV3 replication by 58% and 51%, respectively. While all compounds except SAH increased FV3 replication, only adenine increased plaque area. This suggests that the stimulatory effect of adenine on FV3 replication is mediated by a mechanism that is at least in part independent from the other compounds investigated. Our results are the first to report a response to exogenously applied purines and may provide insight into the importance of purine metabolism during iridoviral infection.
Collapse
Affiliation(s)
| | | | | | - Craig R. Brunetti
- Department of Biology, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada; (S.R.L.); (R.J.N.E.)
| |
Collapse
|
6
|
Jayathilaka EHTT, Edirisinghe SL, Lee J, Nikapitiya C, De Zoysa M. Isolation and characterization of plasma-derived exosomes from olive flounder (Paralichthys olivaceus) and their wound healing and regeneration activities. FISH & SHELLFISH IMMUNOLOGY 2022; 128:196-205. [PMID: 35932983 DOI: 10.1016/j.fsi.2022.07.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Exosomes have garnered enormous interest for their role in physiological and pathological processes and their potential for therapeutic and diagnostic applications. In this study, exosomes were isolated from plasma of olive flounder (Paralichthys olivaceus) and their physiochemical and morphological characteristics, as well as wound healing and regeneration activities were determined. Isolated exosomes had typical characteristics, including average particle diameter (151.82 ± 9.17 nm), concentration (6.31 × 1010 particles/mL) with a membrane-bound, cup-shaped morphology. Exosome marker proteins, tetraspanins (CD63, CD9, and CD81), and acetylcholinesterase were detected, indicating the presence of exosomes in olive flounder plasma. Exosomes exhibited no toxicity in in vitro and in vivo studies, even at the highest treatment concentrations (100 and 400 μg/mL, respectively), confirming their suitability for further functional studies. Following exosome treatment (50 and 100 μg/mL), substantial cell migration with rapid closure of the open wound area in in vitro scratch wound healing assay and faster zebrafish larvae fin regeneration rate was observed compared to that of the vehicle. Moreover, exosomes exhibited immunomodulatory properties associated with wound healing, based on mRNA expression patterns in fathead minnow (FHM) cells. In conclusion, exosomes isolated from olive flounder plasma using ultracentrifugation exhibited minimal toxicity and enhanced wound healing and tissue regeneration activities. Identification and in-depth investigation of olive flounder plasma-derived exosome constituents will support the development of exosomes as an efficient therapeutic carrier system for fish medicine in the future.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Shan Lakmal Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Isolation and Characterization of Plasma-Derived Exosomes from the Marine Fish Rock Bream (Oplegnathus fasciatus) by Two Isolation Techniques. FISHES 2022. [DOI: 10.3390/fishes7010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed to isolate exosomes from the plasma of marine fish, rock bream (Oplegnathus fasciatus), by two isolation methods: differential ultracentrifugation (UC) and a commercial membrane affinity spin column technique (kit). Morphological and physicochemical characteristics of the isolated exosomes were determined by these two methods, and the efficiencies of the two methods were compared. Exosomes isolated by both methods were in the expected size range (30–200 nm) and had a characteristic cup-shape in transmission electron microscopy observation. Moreover, more intact exosomes were identified using the kit-based method than UC. Nanoparticle tracking analysis demonstrated a heterogeneous population of exosomes with a mean particle diameter of 114.6 ± 4.6 and 111.2 ± 2.2 nm by UC and a kit-based method, respectively. The particle concentration obtained by the kit method (1.05 × 1011 ± 1.23 × 1010 particles/mL) was 10-fold higher than that obtained by UC (4.90 × 1010 ± 2.91 × 109 particles/mL). The kit method had a comparatively higher total protein yield (1.86 mg) and exosome protein recovery (0.55 mg/mL plasma). Immunoblotting analysis showed the presence of exosome marker proteins (CD81, CD63, and HSP90) in the exosomes isolated by both methods and suggests the existence of exosomes. However, the absence of cytotoxicity or adverse immune responses to fish and mammalian cells by the exosomes isolated by the UC procedure indicates its suitability for functional studies in vitro. Overall, our basic characterization results indicate that the kit-based method is more suitable for isolating high-purity exosomes from fish plasma, whereas UC has higher safety in terms of yielding exosomes with low toxicity. This study provides evidence for the existence of typical exosomes in rock beam plasma and facilitates the selection of an efficient exosome isolation procedure for future applications in disease diagnosis and exosome therapy as fish medicine.
Collapse
|
8
|
Gallant MJ, Hogan NS. Developmental expression profiles and thyroidal regulation of cytokines during metamorphosis in the amphibian Xenopus laevis. Gen Comp Endocrinol 2018; 263:62-71. [PMID: 29656046 DOI: 10.1016/j.ygcen.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
Abstract
Early life-stages of amphibians rely on the innate immune system for defense against pathogens. While thyroid hormones (TH) are critical for metamorphosis and later development of the adaptive immune system, the role of TH in innate immune system development is less clear. An integral part of the innate immune response are pro-inflammatory cytokines - effector molecules that allow communication between components of the immune system. The objective of this study was to characterize the expression of key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β) and interferon-γ (IFN-γ), throughout amphibian development and determine the impacts of thyroidal modulation on their expression. Xenopus laevis were sampled at various stages of development encompassing early embryogenesis to late prometamorphosis and cytokine expression was measured by real-time PCR. Expression of TNFα and IL-1β were transient over development, increasing with developmental stage, while IFN-γ remained relatively stable. Functionally athyroid, premetamorphic tadpoles were exposed to thyroxine (0.5 and 2 μg/L) or sodium perchlorate (125 and 500 μg/L) for seven days. Tadpoles demonstrated characteristic responses of advanced development with thyroxine exposure and delayed development (although to a lesser extent) and increased thyroid gland area and follicular cell height with sodium perchlorate exposure. Exposure to thyroxine for two days resulted in decreased expression of IL-1β in tadpole trunks. Sodium perchlorate had negligible effects on cytokine expression. Overall, these results demonstrate that cytokine transcript levels vary with stage of tadpole development but that their ontogenic regulation is not likely exclusively influenced by thyroid status. Understanding the direct and indirect effects of altered hormone status may provide insight into potential mechanisms of altered immune function during amphibian development.
Collapse
Affiliation(s)
- Melanie J Gallant
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
9
|
Zare A, Henry D, Chua G, Gordon P, Habibi HR. Differential Hepatic Gene Expression Profile of Male Fathead Minnows Exposed to Daily Varying Dose of Environmental Contaminants Individually and in Mixture. Front Endocrinol (Lausanne) 2018; 9:749. [PMID: 30619083 PMCID: PMC6295643 DOI: 10.3389/fendo.2018.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants are known to impair reproduction, metabolism and development in wild life and humans. To investigate the mechanisms underlying adverse effects of contaminants, fathead minnows were exposed to a number of endocrine disruptive chemicals (EDCs) including Nonylphenol (NP), bisphenol-A (BPA), Di(2-ethylhexyl) phthalate (DEHP), and a mixture of the three chemicals for 21 days, followed by determination of the liver transcriptome by expression microarrays. Pathway analysis revealed a distinct mode of action for the individual chemicals and their mixture. The results showed expression changes in over 980 genes in response to exposure to these EDC contaminants individually and in mixture. Ingenuity Pathway core and toxicity analysis were used to identify the biological processes, pathways and the top regulators affected by these compounds. A number of canonical pathways were significantly altered, including cell cycle & proliferation, lipid metabolism, inflammatory, innate immune response, stress response, and drug metabolism. We identified 18 genes that were expressed in all individual and mixed treatments. Relevant candidate genes identified from expression microarray data were verified using quantitative PCR. We were also able to identify specific genes affected by NP, BPA, and DEHP individually, but were also affected by exposure to the mixture of the contaminants. Overall the results of this study provide novel information on the adverse health impact of contaminants tested based on pathway analysis of transcriptome data. Furthermore, the results identify a number of new biomarkers that can potentially be used for screening environmental contaminants.
Collapse
Affiliation(s)
- Ava Zare
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Paul Gordon
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
10
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Allen AG, Morgans S, Smith E, Aron MM, Jancovich JK. The Ambystoma tigrinum virus (ATV) RNase III gene can modulate host PKR activation and interferon production. Virology 2017; 511:300-308. [PMID: 28844332 DOI: 10.1016/j.virol.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The iridovirus RNase III gene is one of 26 conserved core genes among the family Iridoviridae. Initial studies suggest this viral protein functions to suppress RNA interference pathways that may attack viral RNA during infection. Therefore, to determine if the Ambystoma tigrinum virus (ATV) RNase III-like gene (ORF 25R) can modulate the host innate immune response fish and human cells ectopically expressing 25R were treated with polyI:C and monitored for interferon synthesis and phosphorylation of eIF2α and PKR. We found a decrease in cellular IFN production and modulation of the PKR pathway. In addition, ATV deleted of the RNase III gene (ATVΔ25R) shows reduced pathogenicity in tiger salamanders. Collectively our data suggest that the ATV 25R protein is a pathogenesis factor that may function to help evade the host's immune response by masking activators of the IFN pathway.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Scott Morgans
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Eric Smith
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Mariah M Aron
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - James K Jancovich
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA.
| |
Collapse
|
12
|
Lisser GJ, Vo NTK, DeWitte-Orr SJ. Delineating the roles of cellular and innate antiviral immune parameters mediating ranavirus susceptibility using rainbow trout cell lines. Virus Res 2017. [PMID: 28634115 DOI: 10.1016/j.virusres.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Frog virus 3 is the type species of the Ranavirus genus and the causative agent of massive mortalities of aquatic species worldwide. A critical step in limiting virus replication, particularly early in infection, is the innate immune response. Presently, little is known regarding what innate immune strategies limit FV3 at the cellular level. To this end, the present study uses two rainbow trout cell lines, RTG-2 and RTgutGC, which demonstrate susceptible and relatively resistant phenotypes to FV3 infection, to elucidate susceptibility factors to FV3. RTG-2 demonstrated a lower LD50 and significantly higher virus transcript production compared to RTgutGC. The mode of cell death appeared to be apoptosis for both cell lines; however, RTG-2 did not demonstrate fragmented nuclei typical of apoptosis in cell culture. Next, the source of RTG-2's enhanced susceptibility was pursued, in hopes of highlighting unique features of this virus-host interaction that would predispose a cell to susceptibility. The type I interferon (IFN) response is the keystone mechanism used by the innate immune system to limit virus replication. FV3 induced very low to no levels of IFNs and interferon stimulated genes (ISGs) in either cell line, nor did inducing IFNs prior to infection inhibit virus-induced cell death. A dsRNA-induced antiviral state did reduce virus replication however. UV-inactivated FV3 was also able to kill RTG-2; thus, susceptibility to FV3-induced cell death observed in RTG-2 was independent of virus replication or the cell's ability, or lack thereof, to produce an IFN response. Importantly, RTG-2 showed greater viral entry compared to RTgutGC, suggesting non-innate immune factors, such as surface receptor expression or endocytic mechanism rates, may be key contributors to FV3 susceptibility. These findings contribute to our understanding of cell-level susceptibility to this environmentally important aquatic animal pathogen.
Collapse
Affiliation(s)
- Graeme J Lisser
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada
| | - Nguyen T K Vo
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada
| | - Stephanie J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada; Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
13
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
14
|
Thornton LM, LeSueur MC, Yost AT, Stephens DA, Oris JT, Sellin Jeffries MK. Characterization of basic immune function parameters in the fathead minnow (Pimephales promelas), a common model in environmental toxicity testing. FISH & SHELLFISH IMMUNOLOGY 2017; 61:163-172. [PMID: 28027985 DOI: 10.1016/j.fsi.2016.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The fathead minnow (Pimephales promelas) is an environmental sentinel species, commonly used in toxicity testing. However, there is a lack of data regarding basic immune function in this species. To improve the usefulness of the fathead minnow as a model for basic immune function and immunotoxicity, this study sought to 1) compare the differential expression of immune function genes in naïve fathead minnows and 2) determine the effects of pathogen exposure on immune gene expression and spleen index. To accomplish this, kidney, spleen and liver tissue were collected three days post injection (dpi) from adult male fathead minnows from each of the following groups: 1) uninjected control 2) sham-injected (Hank's balanced salt solution) and 3) pathogen-injected (Yersinia ruckeri). Spleen tissue was also collected at seven and 14 dpi. Differential tissue expression of immune function genes was evaluated in naïve minnows and expression patterns were similar to those found in other fish species, with liver tissue generally having the highest amount of expression. Following pathogen injection, the expression of complement component 3 (c3) (4.4-fold, kidney; 2.5-fold, liver), interleukin 11 (il11) (4.8-fold, kidney; 15.2-fold, liver) and interleukin 1β (il1β) (8.2-fold, kidney; 17.2-fold, spleen; 2.6-fold, liver) were significantly upregulated. Elastase 2 (elas2) was significantly downregulated (5.8-fold) in liver tissue. A significant increase in spleen index at seven dpi was also observed in pathogen-injected minnows. This study has identified endpoints that are part of the normal response to pathogen in fathead minnows, an essential step toward the development of the fathead minnow as a model for immunotoxicity evaluations.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Meriel C LeSueur
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Alexandra T Yost
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Dane A Stephens
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - James T Oris
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Marlo K Sellin Jeffries
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
15
|
Huang X, Fang J, Chen Z, Zhang Q. Rana grylio virus TK and DUT gene locus could be simultaneously used for foreign gene expression. Virus Res 2016; 214:33-8. [PMID: 26806670 DOI: 10.1016/j.virusres.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Ranaviruses (family Iridoviridae, genus Ranavirus) have been recognized as emerging infectious pathogens and caused a great loss to the global biodiversity. Thymidine kinase (TK) and deoxyuridine triphosphatase (dUTPase, DUT, encoded by ORF 67R) are ubiquitous, existing in iridoviruses and other organisms. Previous studies showed that TK and DUT could be individually knocked out without impeding viral replication. In this study, we tried to insert two fluorescence genes into the above loci. We started with Δ67R-RGV, a recently generated recombinant Rana grylio virus (RGV) with the whole DUT replaced by enhanced green fluorescence protein (EGFP) gene. Then, a red fluorescence protein (RFP) gene initiated by RGV immediate-early (IE) ICP18 gene promoter was inserted into TK locus through homologous recombination. A novel recombinant virus, ΔDUT, TK-RGV, was generated by nine successive rounds of plaque isolation using RFP selection. All of the plaques produced by this recombinant virus could emit both green and red fluorescence. Furthermore, one-step and multiple-step growth curves of ΔDUT, TK-RGV were similar to those of wt-RGV and Δ67R-RGV. In conclusion, a novel dual-fluorescence labeled recombinant iridovirus in which DUT and TK gene locus were simultaneously used for foreign gene expression was constructed.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhongyuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells. Sci Rep 2016; 6:18696. [PMID: 26727547 PMCID: PMC4698634 DOI: 10.1038/srep18696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response.
Collapse
|
17
|
Birol I, Behsaz B, Hammond SA, Kucuk E, Veldhoen N, Helbing CC. De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes. PLoS One 2015; 10:e0130720. [PMID: 26121473 PMCID: PMC4488148 DOI: 10.1371/journal.pone.0130720] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/23/2015] [Indexed: 12/04/2022] Open
Abstract
In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates) catesbeiana) and the African clawed frog (Xenopus laevis). We used high throughput RNA sequencing (RNA-seq) data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.
Collapse
Affiliation(s)
- Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- * E-mail:
| | - Bahar Behsaz
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - S. Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, BC, V8W 2Y2, Canada
| | - Erdi Kucuk
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, BC, V8W 2Y2, Canada
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|