1
|
Fahnøe U, Madsen LW, Christensen PB, Sølund CS, Mollerup S, Pinholt M, Weis N, Øvrehus A, Bukh J. Effect of direct-acting antivirals on the titers of human pegivirus 1 during treatment of chronic hepatitis C patients. Microbiol Spectr 2024; 12:e0064124. [PMID: 39051781 PMCID: PMC11370240 DOI: 10.1128/spectrum.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty (23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequences could be assembled to complete HPgV-1 genomes, and most formed a genotype 2 subclade. All HPgV-1 viral genomic regions were under negative purifying selection. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 was observed in 10 patients during treatment with sofosbuvir-containing regimens, sustained to the end of treatment (EOT) and in two cases decreasing to below the detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with the inclusion of pegylated interferon, titers decreased to below the detection limit at week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, and the addition of pegylated interferon increased the effect on patients with coinfections. This points to the high specificity of protease and NS5A inhibitors toward HCV and the more broad-spectrum activity of sofosbuvir and especially pegylated interferon. IMPORTANCE Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) patients, persisting for years. However, little is known about how pegivirus coinfections are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with the addition of pegylated interferon, and followed viral kinetics of both viruses to investigate treatment effects. Only during HCV DAA treatment regimens that included the more broad-spectrum drug sofosbuvir could we detect a consistent decline in pegivirus titers that, however, rebounded to pretreatment levels after treatment cessation. The addition of pegylated interferon gave the highest effect with pegivirus titers decreasing to below the assay detection limit, but without clearance. These results reveal the limited effect of frontline HCV drugs on the closest related human virus, but sofosbuvir appeared to have the potential to be repurposed for other viral diseases.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Research Unit for Internal Medicine Kolding Hospital, Kolding, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hvidovre, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
3
|
Hlavay BA, Zhuo R, Ogando N, Charlton C, Stapleton JT, Klein MB, Power C. Human pegivirus viremia in HCV/HIV co-infected patients: Direct acting antivirals exert anti-pegivirus effects. J Clin Virol 2023; 162:105445. [PMID: 37043902 DOI: 10.1016/j.jcv.2023.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Human pegivirus (HPgV) is a single-stranded RNA virus that is closely related to hepatitis C virus (HCV). HPgV has also been shown to infect patients with human immunodeficiency virus (HIV). The mechanisms and disease outcomes of HPgV infections are largely unknown, although it has been implicated in both cancer and neurological diseases. There are no established therapies for HPgV. OBJECTIVES To estimate the prevalence of HPgV in a cohort of HCV/HIV co-infected patients undergoing treatment for HCV with direct acting antivirals (DAA) and investigate the effect of DAA therapy on HPgV infection. STUDY DESIGN RNA was extracted from plasma samples collected at time points before, during, and after DAA. HPgV RNA abundance was quantified by droplet digital PCR assays targeting the NS5A and 5'UTR domains and confirmed by RT-qPCR. Clinical, demographic and treatment data were analysed. RESULTS HPgV RNA was detected and quantified in 26 of 100 patients' plasma (26%) before starting DAA. Patients with detectable HPgV were more likely to be male, had higher peak HIV plasma levels, and a history of injection drug use. Patients receiving sofosbuvir/ledipasvir (n = 9) displayed significantly lower HPgV levels at time of DAA completion and had lower post-DAA HPgV rebound levels compared to patients receiving sofosbuvir/velpatasvir (n = 11) although both regimens significantly reduced viremia directly following DAA completion. Sustained suppression of HPgV was also observed among patients (n = 2) receiving pegylated-interferon. CONCLUSIONS HPgV RNA was frequently detected in HCV/HIV co-infected patients and was supressed by DAA and pegylated interferon therapies with sofosbuvir-ledipasvir showing greatest antiviral activity. These findings suggest potential treatment strategies for HPgV infections.
Collapse
Affiliation(s)
- B A Hlavay
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - R Zhuo
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
| | - N Ogando
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - C Charlton
- Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
| | - J T Stapleton
- Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - M B Klein
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - C Power
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Garand M, Huang SSY, Goessling LS, Santillan DA, Santillan MK, Brar A, Wylie TN, Wylie KM, Eghtesady P. A Case of Persistent Human Pegivirus Infection in Two Separate Pregnancies of a Woman. Microorganisms 2022; 10:1925. [PMID: 36296201 PMCID: PMC9610878 DOI: 10.3390/microorganisms10101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 05/26/2024] Open
Abstract
Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, infection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. However, unique attributes, such as the increased risk of malignancy or immune modulation, have been recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV infection in two pregnancies, which occurred 4 years apart and without evidence of human immunodeficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital heart disease. A high level of HPgV infection was detected in the maternal blood from different trimesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both pregnancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of our knowledge, this is the first report of persistent HPgV infection involving placental tissues with no clear indication of vertical transmission. Our results reveal a more elaborate viral-host interaction than previously reported, expand our knowledge about tropism, and opens avenues for exploring the replication sites of this virus.
Collapse
Affiliation(s)
- Mathieu Garand
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susie S. Y. Huang
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa S. Goessling
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Anoop Brar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
6
|
Meshram RJ, Kathwate GH, Gacche RN. Progress, evolving therapeutic/diagnostic approaches, and challenges in the management of hepatitis C virus infections. Arch Virol 2022; 167:717-736. [PMID: 35089390 PMCID: PMC8795940 DOI: 10.1007/s00705-022-05375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity and the virus's quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk of developing liver diseases such as cirrhosis and hepatocellular carcinoma. Despite the great strides that have been made towards understanding the pathophysiology of disease progression, the tailored treatments of HCV infection remain to be established. The present review provides an update of the literature pertaining to evolving therapeutic approaches and prophylactic measures for the effective management of HCV infections. An extensive discussion of established and experimental immune prophylactic measures also sheds light on current developments in the design of vaccination strategies against HCV infection. We have also attempted to address the application of nanotechnology in formulating effective therapeutic interventions against HCV. Pointing out the limitations of the existing diagnostic methods and therapeutic approaches against HCV might inspire the design and development of novel, efficient, reliable, and cost-effective diagnostic technologies as well as novel therapeutic and immune prophylactic interventions for the effective management of HCV.
Collapse
Affiliation(s)
| | | | - Rajesh Nivarti Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, MS, 411007, India.
| |
Collapse
|
7
|
Kandathil AJ, Balagopal A. Human Hepegivirus-1: Innocent Traveler, Helpful Symbiote, or Insidious Pathogen? Clin Infect Dis 2021; 71:1229-1231. [PMID: 31671171 DOI: 10.1093/cid/ciz947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Abraham J Kandathil
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Silva ADSN, Silva CP, Barata RR, da Silva PVR, Monteiro PDJ, Lamarão L, Burbano RMR, Nunes MRT, de Lima PDL. Human pegivirus (HPgV, GBV-C) RNA in volunteer blood donors from a public hemotherapy service in Northern Brazil. Virol J 2020; 17:153. [PMID: 33054824 PMCID: PMC7556973 DOI: 10.1186/s12985-020-01427-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human pegivirus (HPgV)-formerly known as GBV-C-is a member of the Flaviviridae family and belongs to the species Pegivirus C. It is a non-pathogenic virus and is transmitted among humans mainly through the exposure to contaminated blood and is often associated with human immunodeficiency virus (HIV) infection, among other viruses. This study aimed to determine the prevalence of HPgV viremia, its association with HIV and clinical epidemiological factors, as well as the full-length sequencing and genome characterization of HPgV recovered from blood donors of the HEMOPA Foundation in Belém-PA-Brazil. METHODS Plasma samples were obtained from 459 donors, tested for the presence of HPgV RNA by the RT-qPCR. From these, a total of 26 RT-qPCR positive samples were submitted to the NGS sequencing approach in order to obtain the full genome. Genome characterization and phylogenetic analysis were conducted. RESULTS The prevalence of HPgV was 12.42%. We observed the highest prevalences among donors aged between 18 and 30 years old (16.5%), with brown skin color (13.2%) and men (15.8%). The newly diagnosed HIV-1 prevalence was 26.67%. The HPgV genotype 2 (2a and 2b) was identified. No data on viral load value was found to corroborate the protective effect of HPgV on HIV evolution. CONCLUSIONS This study provided information regarding the HPgV infection among blood donors from HEMOPA Foundation. Furthermore, we genetically characterized the HPgV circulating strains and described by the first time nearly complete genomes of genotype 2 in Brazilian Amazon.
Collapse
Affiliation(s)
- Aniel de Sarom Negrão Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil.
| | - Clayton Pereira Silva
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Rafael Ribeiro Barata
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Pedro Victor Reis da Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| | - Patrícia Danin Jordão Monteiro
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | - Letícia Lamarão
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | | | | | - Patrícia Danielle Lima de Lima
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| |
Collapse
|
9
|
Wang C, Timmons CL, Shao Q, Kinlock BL, Turner TM, Iwamoto A, Zhang H, Liu H, Liu B. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1. Oncotarget 2016; 6:43293-309. [PMID: 26675377 PMCID: PMC4791233 DOI: 10.18632/oncotarget.6537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/21/2015] [Indexed: 12/28/2022] Open
Abstract
GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1.
Collapse
Affiliation(s)
- Chenliang Wang
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christine L Timmons
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ballington L Kinlock
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Tiffany M Turner
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hui Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|