1
|
Rūmnieks J, Füzik T, Tārs K. Structure of the Borrelia Bacteriophage φBB1 Procapsid. J Mol Biol 2023; 435:168323. [PMID: 37866476 DOI: 10.1016/j.jmb.2023.168323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bacteriophages of Borrelia burgdorferi are a biologically important but under-investigated feature of the Lyme disease-causing spirochete. No virulent borrelial viruses have been identified, but all B. burgdorferi isolates carry a prophage φBB1 as resident circular plasmids. Like its host, the φBB1 phage is quite distinctive and shares little sequence similarity with other known bacteriophages. We expressed φBB1 head morphogenesis proteins in Escherichia coli which resulted in assembly of homogeneous prolate procapsid structures and used cryo-electron microscopy to determine the three-dimensional structure of these particles. The φBB1 procapsids consist of 415 copies of the major capsid protein and an equal combined number of three homologous capsid decoration proteins that form trimeric knobs on the outside of the particle. One of the end vertices of the particle is occupied by a portal assembled from twelve copies of the portal protein. The φBB1 scaffolding protein is entirely α-helical and has an elongated shape with a small globular domain in the middle. Within the tubular section of the procapsid, the internal scaffold is built of stacked rings, each composed of 32 scaffolding protein molecules, which run in opposite directions from both caps with a heterogeneous part in the middle. Inside the portal-containing cap, the scaffold is organized asymmetrically with ten scaffolding protein molecules bound to the portal. The φBB1 procapsid structure provides better insight into the vast structural diversity of bacteriophages and presents clues of how elongated bacteriophage particles might be assembled.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia.
| | - Tibor Füzik
- Structural Virology, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia; Faculty of Biology, University of Latvia, Jelgavas 1, 1004 Riga, Latvia
| |
Collapse
|
2
|
Wang Z, Fokine A, Guo X, Jiang W, Rossmann MG, Kuhn RJ, Luo ZH, Klose T. Structure of Vibrio Phage XM1, a Simple Contractile DNA Injection Machine. Viruses 2023; 15:1673. [PMID: 37632015 PMCID: PMC10457771 DOI: 10.3390/v15081673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- National Cryo-EM Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xinwu Guo
- Sansure Biotech Inc., Changsha 410205, China
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Huet A, Oh B, Maurer J, Duda RL, Conway JF. A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex. SCIENCE ADVANCES 2023; 9:eadg8868. [PMID: 37327331 PMCID: PMC10275583 DOI: 10.1126/sciadv.adg8868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bonnie Oh
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh Maurer
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L. Duda
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Roberts SM, Aldis M, Wright ET, Gonzales CB, Lai Z, Weintraub ST, Hardies SC, Serwer P. Siphophage 0105phi7-2 of Bacillus thuringiensis: Novel Propagation, DNA, and Genome-Implied Assembly. Int J Mol Sci 2023; 24:ijms24108941. [PMID: 37240285 DOI: 10.3390/ijms24108941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE). Average plaque diameter vs. plaque-supporting agarose gel concentration plots reveal unusually steep conversion to large plaques as agarose concentration decreases below 0.2%. These large plaques sometimes have small satellites and are made larger by orthovanadate, an ATPase inhibitor. Phage head-host-cell binding is observed by electron microscopy. We hypothesize that this binding causes plaque size-increase via biofilm evolved, ATP stimulated ride-hitching on motile host cells by temporarily inactive phages. Phage 0105phi7-2 does not propagate in liquid culture. Genomic sequencing/annotation reveals history as temperate phage and distant similarity, in a virion-assembly gene cluster, to prototypical siphophage SPP1 of Bacillus subtilis. Phage 0105phi7-2 is distinct in (1) absence of head-assembly scaffolding via either separate protein or classically sized, head protein-embedded peptide, (2) producing partially condensed, head-expelled DNA, and (3) having a surface relatively poor in AGE-detected net negative charges, which is possibly correlated with observed low murine blood persistence.
Collapse
Affiliation(s)
- Samantha M Roberts
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Miranda Aldis
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, UT Health, San Antonio, TX 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Podgorski JM, Freeman K, Gosselin S, Huet A, Conway JF, Bird M, Grecco J, Patel S, Jacobs-Sera D, Hatfull G, Gogarten JP, Ravantti J, White SJ. A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure 2023; 31:282-294.e5. [PMID: 36649709 PMCID: PMC10071307 DOI: 10.1016/j.str.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.
Collapse
Affiliation(s)
- Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Krista Freeman
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sophia Gosselin
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Bird
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - John Grecco
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Shreya Patel
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Johann Peter Gogarten
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA.
| |
Collapse
|
6
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Mondal P, Mallick B, Dutta M, Dutta S. Isolation, characterization, and application of a novel polyvalent lytic phage STWB21 against typhoidal and nontyphoidal Salmonella spp. Front Microbiol 2022; 13:980025. [PMID: 36071966 PMCID: PMC9441917 DOI: 10.3389/fmicb.2022.980025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the common causal agents of bacterial gastroenteritis-related morbidity and mortality among children below 5 years and the elderly populations. Salmonellosis in humans is caused mainly by consuming contaminated food originating from animals. The genus Salmonella has several serovars, and many of them are recently reported to be resistant to multiple drugs. Therefore, isolation of lytic Salmonella bacteriophages in search of bactericidal activity has received importance. In this study, a Salmonella phage STWB21 was isolated from a lake water sample and found to be a novel lytic phage with promising potential against the host bacteria Salmonella typhi. However, some polyvalence was observed in their broad host range. In addition to S. typhi, the phage STWB21 was able to infect S. paratyphi, S. typhimurium, S. enteritidis, and a few other bacterial species such as Sh. flexneri 2a, Sh. flexneri 3a, and ETEC. The newly isolated phage STWB21 belongs to the Siphoviridae family with an icosahedral head and a long flexible non-contractile tail. Phage STWB21 is relatively stable under a wide range of pH (4–11) and temperatures (4°C–50°C) for different Salmonella serovars. The latent period and burst size of phage STWB21 against S. typhi were 25 min and 161 plaque-forming units per cell. Since Salmonella is a foodborne pathogen, the phage STWB21 was applied to treat a 24 h biofilm formed in onion and milk under laboratory conditions. A significant reduction was observed in the bacterial population of S. typhi biofilm in both cases. Phage STWB21 contained a dsDNA of 112,834 bp in length, and the GC content was 40.37%. Also, genomic analysis confirmed the presence of lytic genes and the absence of any lysogeny or toxin genes. Overall, the present study reveals phage STWB21 has a promising ability to be used as a biocontrol agent of Salmonella spp. and proposes its application in food industries.
Collapse
Affiliation(s)
- Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- *Correspondence: Moumita Dutta, ;
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Han X, Zhou X, Pei Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Characterization of CRISPR-Cas systems in Bifidobacterium breve. Microb Genom 2022; 8. [PMID: 35451949 PMCID: PMC9453068 DOI: 10.1099/mgen.0.000812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system is an important adaptive immune system for bacteria to resist foreign DNA infection, which has been widely used in genotyping and gene editing. To provide a theoretical basis for the application of the CRISPR-Cas system in Bifidobacterium breve, the occurrence and diversity of CRISPR-Cas systems were analysed in 150 B. breve strains. Specifically, 47 % (71/150) of B. breve genomes possessed the CRISPR-Cas system, and type I-C CRISPR-Cas system was the most widely distributed among those strains. The spacer sequences present in B. breve can be used as a genotyping marker. Additionally, the phage assembly-related proteins were important targets of the type I-C CRISPR-Cas system in B. breve, and the protospacer adjacent motif sequences were further characterized in B. breve type I-C system as 5'-TTC-3'. All these results might provide a molecular basis for the development of endogenous genome editing tools in B. breve.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| |
Collapse
|
9
|
Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res 2020; 286:198080. [PMID: 32615132 DOI: 10.1016/j.virusres.2020.198080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 10/24/2022]
Abstract
A novel bacteriophage vB_VpaS_PG07 (hereafter designated PG07) that infects Vibrio parahaemolyticus was isolated. The bacteriophage was examined by transmission electron microscopy, and the result showed that PG07 belonged to family Siphoviridae, with an isometric polyhedral head (80 nm in diameter) and a long tail (175 nm in length). The one-step growth curve showed that the latent period and burst size were 10 min and 60 PFUs/infected cell, respectively. PG07 had double-stranded DNA genome of 112, 106 bp with 43.65 % G+C content. A total of 158 putative open reading frames (ORFs) were identified in the genome of PG07, including functional genes associated with integration, nucleotide metabolism and replication, structure and packaging and bacterial lysis. Sixteen tRNA genes were discovered, and no genes associated with pathogenicity and virulence were identified. The genome of PG07 showed very low similarity to phage genomes deposited in public databases (77.65 % nucleotide identity and 9 % query coverage). The newly sequenced PG07 could be considered as a novel T5-like virus. PG07 significantly reduced the mortality of shrimps challenged with V. parahaemolyticus, a bacterium causing acute hepatopancreatic necrosis disease (AHPND). The findings highlight the potential of PG07 as an effective antibacterial agent for phage prophylaxis and phage therapy in aquaculture.
Collapse
Affiliation(s)
- Tongyan Ding
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong, 266109, China; Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Feiyang Zhao
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Zhaozuo Zhang
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Huiying Ren
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong, 266109, China.
| |
Collapse
|
10
|
González B, Monroe L, Li K, Yan R, Wright E, Walter T, Kihara D, Weintraub ST, Thomas JA, Serwer P, Jiang W. Phage G Structure at 6.1 Å Resolution, Condensed DNA, and Host Identity Revision to a Lysinibacillus. J Mol Biol 2020; 432:4139-4153. [PMID: 32454153 DOI: 10.1016/j.jmb.2020.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Å resolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.
Collapse
Affiliation(s)
- Brenda González
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Lyman Monroe
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Kunpeng Li
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Rui Yan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Elena Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Thomas Walter
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907-2107, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Julie A Thomas
- Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Wen Jiang
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Purdue Cryo-EM Facility, Purdue University, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Purdue Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, IN 47907, USA; Purdue Institute for Infectious, Immunology and Inflammatory Diseases, Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47097, USA.
| |
Collapse
|
11
|
Maurer JB, Oh B, Moyer CL, Duda RL. Capsids and Portals Influence Each Other's Conformation During Assembly and Maturation. J Mol Biol 2020; 432:2015-2029. [PMID: 32035900 DOI: 10.1016/j.jmb.2020.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 01/22/2023]
Abstract
The portal proteins of tailed bacteriophage and Herpesvirus capsids form dodecameric rings that occupy one capsid vertex and are incorporated during the assembly of capsid precursors called procapsids or proheads. Portals are essential and serve as the pore for DNA transit and the site of tail attachment; however, bacteriophage HK97 capsid proteins assemble efficiently without a portal when expressed from plasmids. Following portal co-expression, portals were incorporated into about half of the proheads that were made. In the absence of active capsid maturation protease, uncleaved proheads formed dimers, trimers, and tetramers of proheads during purification, but only if they had portals. These appeared bound to membrane-like fragments by their portals and could be disaggregated by detergents, supporting a role for membranes in their formation and in capsid assembly. The precursors to prohead oligomers were detected in cell extracts. These were able to bind to Octyl-Sepharose and could be released by detergent, while uncleaved proheads without portal or cleaved proheads with portal did not bind. Our results document a discrete change in the HK97 portal's hydrophobicity induced by cleavage of the procapsid shell in which it is embedded. Additionally, we detected an increase in the rate of expansion induced by the presence of a portal complex in cleaved HK97 proheads. These results suggest that portals and capsids influence each other's conformation during assembly. The formation of prohead oligomers also provides a rapid and sensitive assay for identification and analysis of portal incorporation mutants.
Collapse
Affiliation(s)
- Joshua B Maurer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bonnie Oh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Crystal L Moyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
12
|
Ignatiou A, Brasilès S, El Sadek Fadel M, Bürger J, Mielke T, Topf M, Tavares P, Orlova EV. Structural transitions during the scaffolding-driven assembly of a viral capsid. Nat Commun 2019; 10:4840. [PMID: 31649265 PMCID: PMC6813328 DOI: 10.1038/s41467-019-12790-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 11/11/2022] Open
Abstract
Assembly of tailed bacteriophages and herpesviruses starts with formation of procapsids (virion precursors without DNA). Scaffolding proteins (SP) drive assembly by chaperoning the major capsid protein (MCP) to build an icosahedral lattice. Here we report near-atomic resolution cryo-EM structures of the bacteriophage SPP1 procapsid, the intermediate expanded procapsid with partially released SPs, and the mature capsid with DNA. In the intermediate state, SPs are bound only to MCP pentons and to adjacent subunits from hexons. SP departure results in the expanded state associated with unfolding of the MCP N-terminus and straightening of E-loops. The newly formed extensive inter-capsomere bonding appears to compensate for release of SPs that clasp MCP capsomeres together. Subsequent DNA packaging instigates bending of MCP A domain loops outwards, closing the hexons central opening and creating the capsid auxiliary protein binding interface. These findings provide a molecular basis for the sequential structural rearrangements during viral capsid maturation.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Sandrine Brasilès
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Mehdi El Sadek Fadel
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Jörg Bürger
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
- Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Paulo Tavares
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
13
|
Fong K, Tremblay DM, Delaquis P, Goodridge L, Levesque RC, Moineau S, Suttle CA, Wang S. Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses 2019; 11:v11090854. [PMID: 31540091 PMCID: PMC6783827 DOI: 10.3390/v11090854] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Phages infecting members of the opportunistic human pathogen, Salmonella enterica, are widespread in natural environments and offer a potential source of agents that could be used for controlling populations of this bacterium; yet, relatively little is known about these phages. Here we describe the isolation and characterization of 45 phages of Salmonella enterica from disparate geographic locations within British Columbia, Canada. Host-range profiling revealed host-specific patterns of susceptibility and resistance, with several phages identified that have a broad-host range (i.e., able to lyse >40% of bacterial hosts tested). One phage in particular, SE13, is able to lyse 51 out of the 61 Salmonella strains tested. Comparative genomic analyses also revealed an abundance of sequence diversity in the sequenced phages. Alignment of the genomes grouped the phages into 12 clusters with three singletons. Phages within certain clusters exhibited extraordinarily high genome homology (>98% nucleotide identity), yet between clusters, genomes exhibited a span of diversity (<50% nucleotide identity). Alignment of the major capsid protein also supported the clustering pattern observed with alignment of the whole genomes. We further observed associations between genomic relatedness and the site of isolation, as well as genetic elements related to DNA metabolism and host virulence. Our data support the knowledge framework for phage diversity and phage-host interactions that are required for developing phage-based applications for various sectors, including biocontrol, detection and typing.
Collapse
Affiliation(s)
- Karen Fong
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Denise M Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Sylvain Moineau
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany, and the Institute for Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
14
|
San Martín C. Virus Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:129-158. [DOI: 10.1007/978-3-030-14741-9_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
Roger W. Hendrix was at the forefront of bacteriophage biology for nearly 50 years and was central to our understanding of both viral capsid assembly and phage genomic diversity and evolution. Roger's warm and gentle demeanor belied a razor-sharp mind and warmed him to numerous highly productive collaborations that amplified his scientific impact. Roger was always completely open with scientific ideas while at the same time quietly agitating with a stream of new ways of thinking about problems and nudging our communities to search for innovative solutions: a gentle but highly effective provocateur.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Carpena N, Manning KA, Dokland T, Marina A, Penadés JR. Convergent evolution of pathogenicity islands in helper cos phage interference. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0505. [PMID: 27672154 PMCID: PMC5052747 DOI: 10.1098/rstb.2015.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that exploit the life cycle of their helper phages for their own benefit. Most SaPIs are packaged by their helper phages using a headful (pac) packaging mechanism. These SaPIs interfere with pac phage reproduction through a variety of strategies, including the redirection of phage capsid assembly to form small capsids, a process that depends on the expression of the SaPI-encoded cpmA and cpmB genes. Another SaPI subfamily is induced and packaged by cos-type phages, and although these cos SaPIs also block the life cycle of their inducing phages, the basis for this mechanism of interference remains to be deciphered. Here we have identified and characterized one mechanism by which the SaPIs interfere with cos phage reproduction. This mechanism depends on a SaPI-encoded gene, ccm, which encodes a protein involved in the production of small isometric capsids, compared with the prolate helper phage capsids. As the Ccm and CpmAB proteins are completely unrelated in sequence, this strategy represents a fascinating example of convergent evolution. Moreover, this result also indicates that the production of SaPI-sized particles is a widespread strategy of phage interference conserved during SaPI evolution. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
17
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
18
|
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly. J Mol Biol 2017; 429:2474-2489. [PMID: 28705762 DOI: 10.1016/j.jmb.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/25/2017] [Accepted: 07/06/2017] [Indexed: 01/28/2023]
Abstract
Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly.
Collapse
|
19
|
Tso D, Peebles CL, Maurer JB, Duda RL, Hendrix RW. On the catalytic mechanism of bacteriophage HK97 capsid crosslinking. Virology 2017; 506:84-91. [PMID: 28359902 DOI: 10.1016/j.virol.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
During maturation of the phage HK97 capsid, each of the 415 capsid subunits forms covalent bonds to neighboring subunits, stabilizing the capsid. Crosslinking is catalyzed not by a separate enzyme but by subunits of the assembled capsid in response to conformational rearrangements during maturation. This report investigates the catalytic mechanism. Earlier work established that the crosslinks are isopeptide (amide) bonds between side chains of a lysine on one subunit and an asparagine on another subunit, aided by a catalytic glutamate on a third subunit. The mature capsid structure suggests that the reaction may be facilitated by the arrival of a valine with the lysine to complete a hydrophobic pocket surrounding the glutamate, lysine and asparagine. We show that this valine has an essential role for efficient crosslinking, and that any of six other amino acids can successfully substitute for valine. Evidently none of the remaining 13 amino acids will work.
Collapse
Affiliation(s)
- DanJu Tso
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Craig L Peebles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joshua B Maurer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Korol N, Van den Bossche A, Romaniuk L, Noben JP, Lavigne R, Tovkach F. Experimental evidence for proteins constituting virion components and particle morphogenesis of bacteriophage ZF40. FEMS Microbiol Lett 2016; 363:fnw042. [PMID: 26887841 DOI: 10.1093/femsle/fnw042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage ZF40 is the only currently available, temperate Myoviridae phage infecting the potato pathogen Pectobacterium carotovorum subsp. carotovorum. Despite its unusual tail morphology, its major tail sheath and tube proteins remained uncharacterized after the initial genome annotation. Using ESI tandem mass-spectrometry, 24 structural proteins of the ZF40 virion were identified, with a sequence coverage ranging between 15.8% and 87.8%. The putative function of 16 proteins could be elucidated based on secondary structure analysis and conservative domain searches. The experimental annotation of 35% of the encoded gene products within the structural region of the genome represents a complete view of the virion structure, which can serve as the basis for future structural analysis as a model phage.
Collapse
Affiliation(s)
- Natalia Korol
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, D03680 Kyiv, Ukraine
| | - An Van den Bossche
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium Division of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Liudmyla Romaniuk
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, D03680 Kyiv, Ukraine
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Fedor Tovkach
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, D03680 Kyiv, Ukraine
| |
Collapse
|
21
|
Doore SM, Fane BA. The microviridae: Diversity, assembly, and experimental evolution. Virology 2016; 491:45-55. [PMID: 26874016 DOI: 10.1016/j.virol.2016.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Abstract
The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Sarah M Doore
- School of Plant Sciences and the BIO5 Institute University of Arizona, 1657 E. Helen Street, Tucson, AZ 85721, USA
| | - Bentley A Fane
- School of Plant Sciences and the BIO5 Institute University of Arizona, 1657 E. Helen Street, Tucson, AZ 85721, USA.
| |
Collapse
|
22
|
Huet A, Duda RL, Hendrix RW, Boulanger P, Conway JF. Correct Assembly of the Bacteriophage T5 Procapsid Requires Both the Maturation Protease and the Portal Complex. J Mol Biol 2015; 428:165-181. [PMID: 26616586 DOI: 10.1016/j.jmb.2015.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
The 90-nm-diameter capsid of coliphage T5 is organized with T=13 icosahedral geometry and encloses a double-stranded DNA genome that measures 121kbp. Its assembly follows a path similar to that of phage HK97 but yielding a larger structure that includes 775 subunits of the major head protein, 12 subunits of the portal protein and 120 subunits of the decoration protein. As for phage HK97, T5 encodes the scaffold function as an N-terminal extension (∆-domain) to the major head protein that is cleaved by the maturation protease after assembly of the initial prohead I form and prior to DNA packaging and capsid expansion. Although the major head protein alone is sufficient to assemble capsid-like particles, the yield is poor and includes many deformed structures. Here we explore the role of both the portal and the protease in capsid assembly by generating constructs that include the major head protein and a combination of protease (wild type or an inactive mutant) and portal proteins and overexpressing them in Escherichia coli. Our results show that the inactive protease mutant acts to trigger assembly of the major head protein, probably through binding to the ∆-domain, while the portal protein regulates assembly into the correct T=13 geometry. A cryo-electron microscopy reconstruction of prohead I including inactivated protease reveals density projecting from the prohead interior surface toward its center that is compatible with the ∆-domain, as well as additional internal density that we assign as the inactivated protease. These results reveal complexity in T5 beyond that of the HK97 system.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pascale Boulanger
- Department of Virology, Institute for Integrative Biology of the Cell, UMR 9198 CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, 91191 Gif-sur-Yvette Cedex, France
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
23
|
Abstract
The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assembly also relies on an external scaffolding protein, the triplex, an α2β heterotrimer that coordinates neighboring capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regulate its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid protein (MCP) subunits. The model exploits the triplexes’ departure from 3-fold symmetry to explain the highly skewed MCP hexamers, the triplex orientations at each 3-fold site, and the T=16 architecture. These observations also yielded new insights into maturation. This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, macromolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procapsid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by cryo-electron microscopy suggests a hierarchical pathway in which multisubunit “protomers” are the building blocks of the procapsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral intervention.
Collapse
|
24
|
Suhanovsky MM, Teschke CM. Nature's favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 2015; 479-480:487-97. [PMID: 25864106 PMCID: PMC4424165 DOI: 10.1016/j.virol.2015.02.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
For many (if not all) bacterial and archaeal tailed viruses and eukaryotic Herpesvirdae the HK97-fold serves as the major architectural element in icosahedral capsid formation while still enabling the conformational flexibility required during assembly and maturation. Auxiliary proteins or Δ-domains strictly control assembly of multiple, identical, HK97-like subunits into procapsids with specific icosahedral symmetries, rather than aberrant non-icosahedral structures. Procapsids are precursor structures that mature into capsids in a process involving release of auxiliary proteins (or cleavage of Δ-domains), dsDNA packaging, and conformational rearrangement of the HK97-like subunits. Some coat proteins built on the ubiquitous HK97-fold also have accessory domains or loops that impart specific functions, such as increased monomer, procapsid, or capsid stability. In this review, we analyze the numerous HK97-like coat protein structures that are emerging in the literature (over 40 at time of writing) by comparing their topology, additional domains, and their assembly and misassembly reactions.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA; Department of Chemistry, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| |
Collapse
|
25
|
Abstract
Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.
Collapse
|