1
|
Kalinina T, Kononchuk V, Klyushova L, Gulyaeva L. Effects of Endocrine Disruptors o, p'-Dichlorodiphenyltrichloroethane, p, p'-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. TOXICS 2022; 10:25. [PMID: 35051067 PMCID: PMC8780485 DOI: 10.3390/toxics10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022]
Abstract
Many studies have shown that dichlorodiphenyltrichloroethane (DDT) exposure raises breast cancer risk. Another insecticide with similar properties is endosulfan, which has been actively used in agriculture after DDT prohibition. Previously, we have identified some estradiol-, progesterone-, and testosterone-sensitive microRNAs (miRNAs, miRs). Because DDT and endosulfan have estrogenic, antiandrogenic, and antiprogesterone properties, we hypothesized that these miRNAs are affected by the insecticides. We quantified relative levels of miRNAs and expression levels of their target genes in breast cancer MCF-7 cells treated with p,p'-DDT, o,p'-DDT, or endosulfan. We also quantified miR-19b expression, which, as previously shown, is regulated by estrogen. Here, we observed that miR-19b expression increased in response not only to estradiol but also to testosterone and progesterone. Treatment of MCF-7 cells with p,p'-DDT or endosulfan decreased the protein levels of apoptosis regulators TP53INP1 and APAF1. In cells treated with o,p'-DDT, the TP53INP1 amount decreased after 24 h of incubation, but increased after 48 h of incubation with insecticide. OXTR expression, which is known to be associated with breast carcinogenesis, significantly diminished under the exposure of all insecticides. In cells treated with p,p'-DDT or o,p'-DDT, the observed changes were accompanied by alterations of the levels of hormone-responsive miRNAs: miR-324, miR-190a, miR-190b, miR-27a, miR-193b, and miR-19b.
Collapse
Affiliation(s)
- Tatiana Kalinina
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Vladislav Kononchuk
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Rechkunovskaya Str. 15, 630055 Novosibirsk, Russia
| | - Lyubov Klyushova
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Lyudmila Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Institute for Medicine and Psychology, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Huang S, Hua X, Kuang M, Zhu J, Mu H, Tian Z, Zheng X, Xie Q. miR-190 promotes malignant transformation and progression of human urothelial cells through CDKN1B/p27 inhibition. Cancer Cell Int 2021; 21:241. [PMID: 33926470 PMCID: PMC8082649 DOI: 10.1186/s12935-021-01937-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Although miR-190 has been reported to be related to human diseases, especially in the development and progression of cancer, its expression in human bladder cancer (BC) and potential contribution to BC remain unexplored. Methods RT-qPCR was used to verify the expression level of miR-190 and CDKN1B. Flow cytometry (FCM) assays were performed to detect cell cycle. Soft agar assay was used to measure anchorage-independent growth ability. Methylation-Specific PCR, Dual-luciferase reporter assay and Western blotting were used to elucidate the potential mechanisms involved. Results Our studies revealed that downregulation of the p27 (encoded by CDKN1B gene) protein is an important event related to miR-190, promoting the malignant transformation of bladder epithelial cells. miR-190 binds directly to CDKN1B 3’-UTR and destabilizes CDKN1B mRNA. Moreover, miR-190 downregulates TET1 by binding to the TET1 CDS region, which mediates hypermethylation of the CDKN1B promoter, thereby resulting in the downregulation of CDKN1B mRNA. These two aspects led to miR-190 inhibition of p27 protein expression in human BC cells. A more in-depth mechanistic study showed that c-Jun promotes the transcription of Talin2, the host gene of miR-190, thus upregulating the expression of miR-190 in human BC cells. Conclusions In this study, we found that miR-190 plays an important role in the development of BC. Taken together, these findings indicate that miR-190 may promote the malignant transformation of human urothelial cells by downregulating CDKN1B, which strengthens our understanding of miR-190 in regulating BC cell transformation.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjiao Kuang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Junlan Zhu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haiqi Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Abstract
Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.
Collapse
|
4
|
Zhang QL, Jiang YH, Dong ZX, Li HW, Lin LB. Exposure to benzo[a]pyrene triggers distinct patterns of microRNA transcriptional profiles in aquatic firefly Aquatica wuhana (Coleoptera: Lampyridae). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123409. [PMID: 32763701 DOI: 10.1016/j.jhazmat.2020.123409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| |
Collapse
|
5
|
Jiang C, Dong N, Feng J, Hao M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch 2020; 473:121-130. [PMID: 33196911 DOI: 10.1007/s00424-020-02490-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic stroke is an urgent public health concern and one of the major causes of deaths and disabilities over the world. MicroRNA (miRNA) has become a key mediator of cerebral ischemia-reperfusion (I/R) injuries. However, whether miR-190 is involved in cerebral I/R-induced neuronal damage remains unknown. This study was to investigate the role of miR-190 in the brain I/R injury. We divided the rats into sham, I/R, control, and miR-190-mim (miR-190 mimics) groups. Quantitative real-time polymerase chain reaction (qRT-PCR), Nissl staining, flow cytometry, and western blot were conducted to examine the expression of miR-190 and cell apoptosis in different groups. The results showed that the expression of miR-190 was greatly decreased in rats suffering with I/R. Overexpression of miR-190 significantly reduced the increased neurological scores, brain water contents, infarct volumes, and neuronal apoptosis in rats suffering with I/R. In addition, we found that the expression of RhoA and Rho kinase was greatly elevated in rats suffering with I/R. Bioinformatics analysis indicated that Rho was a target of miR-190. Moreover, overexpression of miR-190 significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while inhibition of miR-190 further upregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis in rats suffering with I/R. Furthermore, knockdown of Rho significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while these effects were inhibited by miR-190 inhibitors in rats suffering with I/R. These results indicate that miR-190 confers protection against brain I/R damage by modulating Rho/Rho-kinase signaling.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, 250001, Shandong Province, People's Republic of China
| | - Jianli Feng
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China.
| | - Maolin Hao
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Oliver GF, Orang AV, Appukuttan B, Marri S, Michael MZ, Marsh GA, Smith JR. Expression of microRNA in human retinal pigment epithelial cells following infection with Zaire ebolavirus. BMC Res Notes 2019; 12:639. [PMID: 31570108 PMCID: PMC6771106 DOI: 10.1186/s13104-019-4671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Survivors of Ebola virus disease (EVD) are at risk of developing blinding intraocular inflammation-or uveitis-which is associated with retinal pigment epithelial (RPE) scarring and persistence of live Zaire ebolavirus (EBOV) within the eye. As part of a large research project aimed at defining the human RPE cell response to being infected with EBOV, this work focused on the microRNAs (miRNAs) associated with the infection. RESULTS Using RNA-sequencing, we detected 13 highly induced and 2 highly repressed human miRNAs in human ARPE-19 RPE cells infected with EBOV, including hsa-miR-1307-5p, hsa-miR-29b-3p and hsa-miR-33a-5p (up-regulated), and hsa-miR-3074-3p and hsa-miR-27b-5p (down-regulated). EBOV-miR-1-5p was also found in infected RPE cells. Through computational identification of putative miRNA targets, we predicted a broad range of regulatory activities, including effects on innate and adaptive immune responses, cellular metabolism, cell cycle progression, apoptosis and autophagy. The most highly-connected molecule in the miR-target network was leucine-rich repeat kinase 2, which is involved in neuroinflammation and lysosomal processing. Our findings should stimulate new studies on the impact of miRNA changes in EBOV-infected RPE cells to further understanding of intraocular viral persistence and the pathogenesis of uveitis in EVD survivors.
Collapse
Affiliation(s)
- Genevieve F Oliver
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Ayla V Orang
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Shashikanth Marri
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Michael Z Michael
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Glenn A Marsh
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, 5 Portarlington Rd, Newcomb, VIC, 3219, Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Flinders Medical Centre Room 4E-431, Flinders Drive, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
7
|
Chen Y, Fachko D, Ivanov NS, Skinner CM, Skalsky RL. Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathog 2019; 15:e1007535. [PMID: 30615681 PMCID: PMC6336353 DOI: 10.1371/journal.ppat.1007535] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/17/2019] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulatory RNAs that can modulate cell signaling and play key roles in cell state transitions. Epstein-Barr virus (EBV) expresses >40 viral miRNAs that manipulate both viral and cellular gene expression patterns and contribute to reprogramming of the host environment during infection. Here, we identified a subset of EBV miRNAs that desensitize cells to B cell receptor (BCR) stimuli, and attenuate the downstream activation of NF-kappaB or AP1-dependent transcription. Bioinformatics and pathway analysis of Ago PAR-CLIP datasets identified multiple EBV miRNA targets related to BCR signal transduction, including GRB2, SOS1, MALT1, RAC1, and INPP5D, which we validated in reporter assays. BCR signaling is critical for B cell activation, proliferation, and differentiation, and for EBV, is linked to reactivation. In functional assays, we demonstrate that EBV miR-BHRF1-2-5p contributes to the growth of latently infected B cells through GRB2 regulation. We further determined that activities of EBV miR-BHRF1-2-5p, EBV miR-BART2-5p, and a cellular miRNA, miR-17-5p, directly regulate virus reactivation triggered by BCR engagement. Our findings provide mechanistic insight into some of the key miRNA interactions impacting the proliferation of latently infected B cells and importantly, governing the latent to lytic switch.
Collapse
Affiliation(s)
- Yan Chen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Devin Fachko
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nikita S. Ivanov
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Camille M. Skinner
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rebecca L. Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
8
|
Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro. Mol Biol Rep 2018; 45:1937-1945. [DOI: 10.1007/s11033-018-4343-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
|
9
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
10
|
Small RNAome sequencing delineates the small RNA landscape of pluripotent adult stem cells in the planarian Schmidtea mediterranea. GENOMICS DATA 2017; 14:114-125. [PMID: 29124009 PMCID: PMC5671611 DOI: 10.1016/j.gdata.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Small noncoding RNAs play a pivotal role in the regulation of gene expression, and are key regulators of animal development. Freshwater planarian exhibits an extraordinary ability to regenerate any missing body parts, representing an emerging model for studying mechanism underlying stem cell regulation and tissue regeneration. Here, we utilized next-generation sequencing (NGS) to identify small RNAs that are expressed in planarian adult stem cells, and are implicated in tissue regeneration. We profiled microRNAs (miRNAs), piwi-interacting RNA (piRNAs), small rDNA-derived RNAs (srRNAs) and endogenous interfering RNAs (endo-siRNAs) population from size 18–30 nt, measured the expression of 244 conserved miRNAs, and identified 41 novel miRNAs and 64 novel endo-siRNAs. Expression profiling analyses revealed that most piRNAs and srRNAs are up-regulated during regeneration, and that the most abundantly expressed srRNAs are from 5.8s and 28s rRNA. Furthermore, a target prediction method was adopted to investigate the anti-correlation of small RNAs and mRNA expression. We built up a gene regulatory network based on the genes that are targeted by dynamically changed small RNAs. These results expand the known small RNA repertoire in planarian, and provide valuable insights and a rich resource for understanding the small RNAs landscape in stem cell-mediated regeneration.
Collapse
|
11
|
MicroRNA miR-155 Is Necessary for Efficient Gammaherpesvirus Reactivation from Latency, but Not for Establishment of Latency. J Virol 2016; 90:7811-21. [PMID: 27334594 DOI: 10.1128/jvi.00521-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED MicroRNA-155 (miR-155) has been shown to play significant roles in the immune response, including in the formation of germinal centers (GC) and the development and maturation of T follicular helper (Tfh) cells. There is in vitro evidence to support a critical role for cellular miR-155 and viral miR-155 homologs in the establishment of gammaherpesvirus latency in B cells. We sought to determine the contribution of miR-155 to the establishment and maintenance of latency in vivo using murine gammaherpesvirus (MHV-68) infection. MHV-68-infected mice deficient in miR-155 exhibited decreases in GC B cells and Tfh cells. However, the frequencies of spleen cells harboring latent MHV-68 genomes were the same in both miR-155-deficient and wild-type (WT) mice. Similar latent loads were also observed in mixed bone marrow chimeric mice, where B cell-extrinsic effects of miR-155 deficiency were normalized. Interestingly, we observed markedly lower efficiency of reactivation from latency in miR-155-deficient cells, indicating an important role for miR-155 in this process. These in vivo data complement previous in vitro studies and lead to the conclusion that miR-155 is not necessary for the establishment or maintenance of gammaherpesvirus latency but that it does affect reactivation efficiency. IMPORTANCE Gammaherpesvirus infection leads to severe disease in immunosuppressed populations. miR-155 has been shown to play important roles in many pathological processes, including tumorigenesis and diseases caused by an overly aggressive immune response. Our work provides valuable in vivo data showing that miR-155 is dispensable for gammaherpesvirus latency but that it is critical for reactivation from latency, which is a crucial step in the viral life cycle.
Collapse
|
12
|
Singh AK, Pandey RK, Shaha C, Madhubala R. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy 2016; 12:1817-1831. [PMID: 27459332 DOI: 10.1080/15548627.2016.1203500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leishmania is an obligate intracellular parasite that replicates inside phagolysosomes or parasitophorous vacuoles (PV) of the monocyte/macrophage lineage. It reprograms macrophages and produces a metabolic state conducive to successful infection and multiplication. MicroRNAs (miRNAs), a class of small 22 to 24 nucleotide noncoding regulatory RNAs alter the gene expression and consequently proteome output by targeting mRNAs, may play a regulatory role in modulating host cell functions. In the present study, we demonstrate the novel regulatory role of host microRNA, MIR30A-3p in modulation of host cell macroautophagy/autophagy after infection with L. donovani. Our in vitro studies showed that MIR30A-3p expression was significantly enhanced after L. donovani infection in a time-dependent manner. Transient transfection with a MIR30A-3p inhibitor followed by L. donovani infection promoted the autophagic response and decreased the intracellular parasite burden in both THP-1 cells and human monocyte-derived macrophages (HsMDM). BECN1/Beclin 1, the mammalian ortholog of yeast Vps30/Atg6, is a key autophagy-promoting protein that plays a key role in the regulation of cell death and survival. We report BECN1-dependent modulation of host cell autophagy in response to L. donovani infection. Pretreatment of L. donovani-infected macrophages with the MIR30A-3p mimic decreased and with antagomir increased the expression of BECN1 protein. We demonstrate that BECN1 is a potential target of MIR30A-3p and this miRNA negatively regulates BECN1 expression. Our present study reveals for the first time a novel role of MIR30A-3p in regulating autophagy-mediated L. donovani elimination by targeting BECN1. The present study has significant impact for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Alok Kumar Singh
- a School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Rajeev Kumar Pandey
- b Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| | - Chandrima Shaha
- b Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| | - Rentala Madhubala
- a School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
13
|
Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice. J Virol 2015; 89:11711-4. [PMID: 26339045 PMCID: PMC4645642 DOI: 10.1128/jvi.01873-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/25/2015] [Indexed: 01/26/2023] Open
Abstract
Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system.
Collapse
|
14
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
15
|
Peck T, Wick MR. Primary cutaneous natural killer/T-cell lymphoma of the nasal type: a report of 4 cases in North American patients. Ann Diagn Pathol 2015; 19:211-5. [PMID: 25952095 DOI: 10.1016/j.anndiagpath.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
The "nasal" type of primary cutaneous lymphoma with natural killer/T-cell differentiation is rarely encountered outside Asia. The authors herein document 4 cases in White, North American individuals between the ages of 39 and 73 years. Their skin lesions were located on the legs in 2 cases, and they were multifocal in the other 2 patients. Microscopically, each neoplasm manifested as a dense infiltrate of cytologically aberrant lymphocytes in the dermis and subcutis. The lesional cells were angiocentric, with associated infarctive-type necrosis of the surrounding tissue. All tumors were labeled for CD3 and CD56; 3 also expressed T-cell intracellular antigen 1. Chromogenic in situ hybridization was intensely reactive for Epstein-Barr virus-encoded ribonucleic acid in each case. All patients died of their tumors or were likely to do so. The pathologic differential diagnosis of "nasal-type" natural killer/T-cell lymphoma in the skin principally centers on γ-δ T-cell lymphoma and subcutaneous panniculitis-like T-cell lymphoma. Integrated analysis of histologic, immunohistochemical, genotypic, and in situ hybridization data is necessary to separate these entities from one another.
Collapse
Affiliation(s)
- Travis Peck
- University of Virginia School of Medicine (TP), and the Department of Pathology (MRW), University of Virginia Health System, Charlottesville, VA
| | - Mark R Wick
- University of Virginia School of Medicine (TP), and the Department of Pathology (MRW), University of Virginia Health System, Charlottesville, VA.
| |
Collapse
|