1
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Li Y, Zhang J, Wang C, Qiao W, Li Y, Tan J. IFI44L expression is regulated by IRF-1 and HIV-1. FEBS Open Bio 2020; 11:105-113. [PMID: 33159419 PMCID: PMC7780093 DOI: 10.1002/2211-5463.13030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
Interferon (IFN)‐inducible 44 like (IFI44L) is an IFN‐stimulated gene (ISG), which is located on the same chromosome as the known antiviral ISG IFI44. Expression of IFI44L is induced by IFN and HIV‐1 infection. However, the mechanism by which IFN‐I induces IFI44L production has not yet been determined. In this study, we analyzed transcriptional regulation of IFI44L via cloning of the IFI44L promoter. We found that IFI44L has two IFN‐stimulated response elements (ISRE), which are necessary for the basal level of IFI44L transcription. IFN‐I and IFN‐II can activate the IFI44L promoter through one of the two ISREs. IFN regulatory factor (IRF)‐1 can activate transcription of IFI44L by binding to one of the ISREs. Additionally, co‐transfection of the IFI44L promoter with an HIV‐1 infectious clone or HIV‐1 infection activated IFI44L promoter transcription, but did not upregulate IFI44L expression via ISREs. These findings will help to understand the interaction between IFI44L and HIV‐1, and aid in elucidation of the role of IFI44L in the antiviral innate immune response.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Junshi Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenchen Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Raehtz KD, Barrenäs F, Xu C, Busman-Sahay K, Valentine A, Law L, Ma D, Policicchio BB, Wijewardana V, Brocca-Cofano E, Trichel A, Gale M, Keele BF, Estes JD, Apetrei C, Pandrea I. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog 2020; 16:e1008333. [PMID: 32119719 PMCID: PMC7077871 DOI: 10.1371/journal.ppat.1008333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/17/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.
Collapse
Affiliation(s)
- Kevin D. Raehtz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fredrik Barrenäs
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Cuiling Xu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Audrey Valentine
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Viskam Wijewardana
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Egidio Brocca-Cofano
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Trapecar M, Khan S, Cohn BL, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol 2018; 11:1158-1167. [PMID: 29456247 PMCID: PMC6030459 DOI: 10.1038/s41385-018-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
Abstract
Determining the magnitude of local immune response during mucosal exposure to viral pathogens is critical to understanding the mechanism of viral pathogenesis. We previously showed that vaginal inoculation of lymphocytic choriomeningitis virus (LCMV) fails to induce a robust innate immune response in the lower female reproductive tract (FRT), allowing high titer viral replication and a delay in T-cell-mediated viral control. Despite this immunological delay, LCMV replication remained confined mainly to the FRT and the draining iliac lymph node. Here, we show that rectal infection with LCMV triggers type I/III interferon responses, followed by innate immune activation and lymphocyte recruitment to the colon. In contrast to vaginal exposure, innate immunity controls LCMV replication in the colon, but virus rapidly disseminates systemically. Virus-induced inflammation promotes the recruitment of LCMV target cells to the colon followed by splenic viral dissemination by infected B cells, and to a lesser extent by CD8 T cells. These findings demonstrate major immunological differences between vaginal and rectal exposure to the same viral pathogen, highlighting unique risks associated with each of these common routes of sexual viral transmission.
Collapse
Affiliation(s)
- Martin Trapecar
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Shahzada Khan
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Benjamin L Cohn
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Frank Wu
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Terrasse R, Memmi M, Palle S, Heyndrickx L, Vanham G, Pozzetto B, Bourlet T. Visualization of X4- and R5-Tropic HIV-1 Viruses Expressing Fluorescent Proteins in Human Endometrial Cells: Application to Tropism Study. PLoS One 2017; 12:e0169453. [PMID: 28060897 PMCID: PMC5218496 DOI: 10.1371/journal.pone.0169453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
Worldwide most HIV infections occur through heterosexual transmission, involving complex interactions of cell-free and cell-associated particles with cells of the female genital tract mucosa. The ability of HIV-1 to “infect” epithelial cells remains poorly understood. To address this question, replicative-competent chimeric constructs expressing fluorescent proteins and harboring the envelope of X4- or R5-tropic HIV-1 strains were used to “infect” endometrial HEC1-A cells. The virus-cell interactions were visualized using confocal microscopy (CM) at various times post infection. Combined with quantification of viral RNA and total HIV DNA in infected cells, the CM pictures suggest that epithelial cells do not support a complete viral replication cycle: X4-tropic viruses are imported into the nucleus in a non-productive way, whereas R5-tropic viruses transit through the cytoplasm without replication and are preferentially transmitted to susceptible activated peripheral blood mononuclear cells. Within the limit of experiments conducted in vitro on a continued cell line, these results indicate that the epithelial mucosa may participate to the selection of HIV-1 strains at the mucosal level.
Collapse
Affiliation(s)
- Rachel Terrasse
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| | - Meriam Memmi
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| | - Sabine Palle
- Centre de Microscopie Confocale Multiphotonique, Université Jean Monnet, Pôle Optique et Vision, Saint-Etienne cedex 2, France
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bruno Pozzetto
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
- * E-mail:
| | - Thomas Bourlet
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| |
Collapse
|
7
|
Early SIV Dissemination After Intrarectal SIVmac251 Challenge Was Associated With Proliferating Virus-Susceptible Cells in the Colorectum. J Acquir Immune Defic Syndr 2016; 71:353-8. [PMID: 26545123 DOI: 10.1097/qai.0000000000000890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Few studies have examined the eclipse time of simian immunodeficiency virus/HIV infection through the anal route. We aimed to measure the eclipse time after SIVmac251 intrarectal inoculation, and to investigate the factor(s) associated with early dissemination. DESIGN Forty macaques were intrarectally challenged with SIVmac251 3 times at 2-week intervals. METHODS Plasma viral RNA was monitored at 4, 7, 11, 14, 21, and 28 days after infection. Rectal/vaginal tissues were obtained and tissue viral loads (VLs) were measured at day 14 postinfection. RESULTS Of 40 macaques 26 (65%) had first detectable viral RNAs in the plasma at day 7 after the challenge that led to productive infection. Strikingly, 6 animals (15%) had detectable viral RNA in the plasma as early as at day 4. The Ki67 viral target CD4 T cells in the colorectal tissues were significantly higher in the early or middle-transmitter groups than those in the late-transmitter group. The rectal VL did not correlate with plasma VL at 14-day postinoculation, but did positively correlate with plasma VLs at days 21 and 28 postinfection. CONCLUSIONS The median eclipse time after intrarectal challenge was 7 days, with a few early transmitters at 4 days. More rapid viral dissemination was associated with a high frequency of colorectal Ki67CCR5CD4T cells, which fuel the local viral replication. Furthermore, local viral replication in the colorectal tissue during the early stage might affect the plasma VL in a delayed manner. Therefore, to reduce/limit these target cells at the portal of viral entry is essential.
Collapse
|
8
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
9
|
Next-Generation mRNA Sequencing Reveals Pyroptosis-Induced CD4+ T Cell Death in Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues. J Virol 2015; 90:1080-7. [PMID: 26559826 DOI: 10.1128/jvi.02297-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4(+) T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes (dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodeficiency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation mRNA sequencing (RNA-seq). At 6 and 10 dpi, concomitant with increased SIV replication, 366 and 1,350 DEGs were detected, respectively, including upregulation of genes encoding proteins that play a role in innate antiviral immune responses, inflammation, and immune activation. Notably, genes (IFI16, caspase-1, and interleukin 1β [IL-1β]) in the canonical pyroptosis pathway were significantly upregulated in expression. We further validated increased pyroptosis using flow cytometry and found that the number of CD4(+) T cells expressing activated caspase-1 protein, the hallmark of ongoing pyroptosis, were significantly increased, which is correlated with decreased CD4(+) T cells in dLNs. Our results demonstrated that pyroptosis contributes to the CD4(+) T cell death in vivo in early SIV infection, which suggests that pyroptosis may play a pivotal role in the pathogenesis of SIV, and by extension, that of HIV-1, since pyroptosis not only induces CD4(+) T cell death but also amplifies inflammation and immune activation. Thus, blocking CD4(+) T cell pyroptosis could be a complementary treatment to antiretroviral therapy. IMPORTANCE Although secondary lymphoid tissues (LTs) are principal sites of human immunodeficiency virus type 1 (HIV-1) replication, inflammation, immune activation, and CD4(+) T cell death, immunopathogenesis in LTs during early infection remains largely unknown. Using the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV rectal infection, we investigated early virus-host interactions. Our results revealed elevated potent host responses in early infection in LTs, including upregulation of genes involved in antiviral immune response, inflammation, and immune activation. Importantly, genes involved in the canonical pyroptosis pathway were significantly upregulated, and there was a strong correlation between CD4(+) T cell decrease and increased number of CD4(+) T cells expressing activated caspase-1 protein, demonstrating that pyroptosis contributes to CD4(+) T cell death in vivo in very early SIV infection. Our finding suggests that blocking pyroptosis may be able to decrease CD4(+) T cell loss during early SIV infection.
Collapse
|
10
|
Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. AIDS 2015; 29:1161-71. [PMID: 26035318 DOI: 10.1097/qad.0000000000000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Variations in the HIV-1 gp120 Env variable loop sequences correlate with virus phenotypes associated with transmission and/or disease progression. We aimed to identify whether signature sequences could be identified in the gp120 Env between acute infection and chronic infection viruses obtained from a group of individuals infected with closely related viruses. METHODS To analyse acute infection versus chronic infection viruses, we studied a transmission cluster of 11 individuals, in which six presented during acute infection and five during chronic infection. Multiple HIV-1 gp120 Env clones were sequenced from each patient with predicted amino acid sequences compared between the groups. RESULTS Cluster analysis of V1V5 Env sequences (n = 215) identified that acute infection viruses had lower potential N-linked glycosylation site (PNGS) densities than viruses from chronic infection, with a higher amino acid length/PNGS ratio. We found a negative correlation between the V1V2 and V4V5 regions for both amino acid length (Pearson P < 0.01) and PNGS numbers (Pearson P < 0.01) during HIV-1 transmission. This association was lost following seroconversion. These findings were confirmed by analysing sequences from the Los Alamos database that were selected and grouped according to timing of transmission. This included acute infection sequences collected 0-10 days (n = 400) and chronic infection sequences 0.5-3 years postseroconversion (n = 394). CONCLUSION Our observations are consistent with a structural association between the V1V2 and V4V5 gp120 regions that is lost following viral transmission. These structural considerations should be taken into consideration when devising HIV-1 immunogens aimed at inducing protective antibody responses targeting transmitted viruses.
Collapse
|