1
|
Meziti A, Smeti E, Daniilides D, Spatharis S, Tsirtsis G, Kormas KA. Increased contribution of parasites in microbial eukaryotic communities of different Aegean Sea coastal systems. PeerJ 2023; 11:e16655. [PMID: 38144191 PMCID: PMC10740597 DOI: 10.7717/peerj.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background-Aim Protistan communities have a major contribution to biochemical processes and food webs in coastal ecosystems. However, related studies are scarce and usually limited in specific groups and/or sites. The present study examined the spatial structure of the entire protistan community in seven different gulfs and three different depths in a regional Mediterranean Sea, aiming to define taxa that are important for differences detected in the marine microbial network across the different gulfs studied as well as their trophic interactions. Methods Protistan community structure analysis was based on the diversity of the V2-V3 hypervariable region of the 18S rRNA gene. Operational taxonomic units (OTUs) were identified using a 97% sequence identity threshold and were characterized based on their taxonomy, trophic role, abundance and niche specialization level. The differentially abundant, between gulfs, OTUs were considered for all depths and interactions amongst them were calculated, with statistic and network analysis. Results It was shown that Dinophyceae, Bacillariophyta and Syndiniales were the most abundant groups, prevalent in all sites and depths. Gulfs separation was more striking at surface corroborating with changes in environmental factors, while it was less pronounced in higher depths. The study of differentially abundant, between gulfs, OTUs revealed that the strongest biotic interactions in all depths occurred between parasite species (mainly Syndiniales) and other trophic groups. Most of these species were generalists but not abundant highlighting the importance of rare species in protistan community assemblage. Conclusion Overall this study revealed the emergence of parasites as important contributors in protistan network regulation regardless of depth.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Evangelia Smeti
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Daniil Daniilides
- Faculty of Biology, Department of Ecology and Systematics, University of Athens, Athens, Greece
| | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - George Tsirtsis
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | | |
Collapse
|
2
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
3
|
Farzad R, Ha AD, Aylward FO. Diversity and genomics of giant viruses in the North Pacific Subtropical Gyre. Front Microbiol 2022; 13:1021923. [PMID: 36504832 PMCID: PMC9732441 DOI: 10.3389/fmicb.2022.1021923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
Large double-stranded DNA viruses of the phylum Nucleocytoviricota, often referred to as "giant viruses," are ubiquitous members of marine ecosystems that are important agents of mortality for eukaryotic plankton. Although giant viruses are known to be prevalent in marine systems, their activities in oligotrophic ocean waters remain unclear. Oligotrophic gyres constitute the majority of the ocean and assessing viral activities in these regions is therefore critical for understanding overall marine microbial processes. In this study, we generated 11 metagenome-assembled genomes (MAGs) of giant viruses from samples previously collected from Station ALOHA in the North Pacific Subtropical Gyre. Phylogenetic analyses revealed that they belong to the orders Imitervirales (n = 6), Algavirales (n = 4), and Pimascovirales (n = 1). Genome sizes ranged from ~119-574 kbp, and several of the genomes encoded predicted TCA cycle components, cytoskeletal proteins, collagen, rhodopsins, and proteins potentially involved in other cellular processes. Comparison with other marine metagenomes revealed that several have broad distribution across ocean basins and represent abundant viral constituents of pelagic surface waters. Our work sheds light on the diversity of giant viruses present in oligotrophic ocean waters across the globe.
Collapse
Affiliation(s)
- Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States,Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, United States,*Correspondence: Frank O. Aylward,
| |
Collapse
|
4
|
Prodinger F, Endo H, Takano Y, Li Y, Tominaga K, Isozaki T, Blanc-Mathieu R, Gotoh Y, Hayashi T, Taniguchi E, Nagasaki K, Yoshida T, Ogata H. Year-round dynamics of amplicon sequence variant communities differ among eukaryotes, Imitervirales, and prokaryotes in a coastal ecosystem. FEMS Microbiol Ecol 2021; 97:6486443. [PMID: 34962982 DOI: 10.1093/femsec/fiab167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 12/25/2021] [Indexed: 11/13/2022] Open
Abstract
Coastal microbial communities are affected by seasonal environmental change, biotic interactions, and fluctuating nutrient availability. We investigated the seasonal dynamics of communities of eukaryotes, a major group of double-stranded DNA viruses that infect eukaryotes (order Imitervirales; phylum Nucleocytoviricota), and prokaryotes in the Uranouchi Inlet, Kochi, Japan. We performed metabarcoding using ribosomal RNA genes and viral polB genes as markers in 43 seawater samples collected over 20 months. Eukaryotes, prokaryotes, and Imitervirales communities characterized by the compositions of amplicon sequence variants (ASVs) showed synchronic seasonal cycles. However, the community dynamics showed intriguing differences in several aspects, such as the recovery rate after a year. We also showed that the differences in community dynamics were at least partially explained by differences in recurrence/persistence levels of individual ASVs among eukaryotes, prokaryotes, and Imitervirales. Prokaryotic ASVs were the most persistent, followed by eukaryotic ASVs and Imitervirales ASVs, which were the least persistent. We argue that the differences in the specificity of interactions (virus-eukaryote vs. prokaryote-eukaryote) as well as the niche breadth of community members were at the origin of the distinct community dynamics among eukaryotes, their viruses, and prokaryotes.
Collapse
Affiliation(s)
- Florian Prodinger
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
| | - Yanze Li
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Tatsuhiro Isozaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Romain Blanc-Mathieu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan.,Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | | | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
5
|
Temporal Patterns of Bacterial and Viral Communities during Algae Blooms of a Reservoir in Macau. Toxins (Basel) 2021; 13:toxins13120894. [PMID: 34941731 PMCID: PMC8704429 DOI: 10.3390/toxins13120894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Compositions of microbial communities associated with blooms of algae in a storage reservoir in Macau, China were investigated between 2013 and 2016. Algae were enumerated by visible light microscopy. Profiles of organisms in water were examined by 16S rRNA sequences and viral metagenomics, based on next generation sequencing. Results of 16S rRNA sequencing indicated that majority of the identified organisms were bacteria closely related to Proteobacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes, and Actinobacteria. Metagenomics sequences demonstrated that the dominant virus was Phycodnavirus, accounting for 70% of the total population. Patterns of relative numbers of bacteria in the microbial community and their temporal changes were determined through alpha diversity indices, principal coordinates analysis (PCoA), relative abundance, and visualized by Venn diagrams. Ways in which the bacterial and viral communities are influenced by various water-related variables were elucidated based on redundancy analysis (RDA). Relationships of the relative numbers of bacteria with trophic status in a reservoir used for drinking water in Macau, provided insight into associations of Phycodnavirus and Proteobacteria with changes in blooms of algae.
Collapse
|
6
|
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc 2021; 97:179-194. [PMID: 34514703 DOI: 10.1111/brv.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems. Most haptophytes are, however, part of highly diverse communities and occur at low densities, decreasing their chance of being infected by viruses with high host specificity. Viruses infecting these microalgae have been isolated in the laboratory, and there are several characteristics that distinguish them from acute viruses infecting bloom-forming haptophytes. Herein we synthesise what is known of viruses infecting haptophyte hosts in the ocean, discuss the adaptive evolution of haptophyte-infecting viruses -from those that cause acute infections to those that stably coexist with their host - and identify traits of importance for successful survival in the ocean.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Haina Wang
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Université Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, Postbox 1066, N-0316, Oslo, Norway
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Janice Lawrence
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
7
|
A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J Virol 2021; 95:JVI.02446-20. [PMID: 33536167 PMCID: PMC8103676 DOI: 10.1128/jvi.02446-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses have long been viewed as entities possessing extremely limited metabolic capacities. Over the last decade, however, this view has been challenged, as metabolic genes have been identified in viruses possessing large genomes and virions-the synthesis of which is energetically demanding. Here, we unveil peculiar phenotypic and genomic features of Prymnesium kappa virus RF01 (PkV RF01), a giant virus of the Mimiviridae family. We found that this virus encodes an unprecedented number of proteins involved in energy metabolism, such as all four succinate dehydrogenase (SDH) subunits (A-D) as well as key enzymes in the β-oxidation pathway. The SDHA gene was transcribed upon infection, indicating that the viral SDH is actively used by the virus- potentially to modulate its host's energy metabolism. We detected orthologous SDHA and SDHB genes in numerous genome fragments from uncultivated marine Mimiviridae viruses, which suggests that the viral SDH is widespread in oceans. PkV RF01 was less virulent compared with other cultured prymnesioviruses, a phenomenon possibly linked to the metabolic capacity of this virus and suggestive of relatively long co-evolution with its hosts. It also has a unique morphology, compared to other characterized viruses in the Mimiviridae family. Finally, we found that PkV RF01 is the only alga-infecting Mimiviridae virus encoding two aminoacyl-tRNA synthetases and enzymes corresponding to an entire base-excision repair pathway, as seen in heterotroph-infecting Mimiviridae These Mimiviridae encoded-enzymes were found to be monophyletic and branching at the root of the eukaryotic tree of life. This placement suggests that the last common ancestor of Mimiviridae was endowed with a large, complex genome prior to the divergence of known extant eukaryotes.IMPORTANCE Viruses on Earth are tremendously diverse in terms of morphology, functionality, and genomic composition. Over the last decade, the conceptual gap separating viruses and cellular life has tightened because of the detection of metabolic genes in viral genomes that express complex virus phenotypes upon infection. Here, we describe Prymnesium kappa virus RF01, a large alga-infecting virus with a unique morphology, an atypical infection profile, and an unprecedented number of genes involved in energy metabolism (such as the tricarboxylic (TCA) cycle and the β-oxidation pathway). Moreover, we show that the gene corresponding to one of these enzymes (the succinate dehydrogenase subunit A) is transcribed during infection and is widespread among marine viruses. This discovery provides evidence that a virus has the potential to actively regulate energy metabolism with its own gene.
Collapse
|
8
|
Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, Wagner RE, Radosevich M. Temporal Dynamics of Soil Virus and Bacterial Populations in Agricultural and Early Plant Successional Soils. Front Microbiol 2020; 11:1494. [PMID: 32733413 PMCID: PMC7358527 DOI: 10.3389/fmicb.2020.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.
Collapse
Affiliation(s)
- Krishnakali Roy
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Dhritiman Ghosh
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Regan E Wagner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
9
|
An Optimized Metabarcoding Method for Mimiviridae. Microorganisms 2020; 8:microorganisms8040506. [PMID: 32252306 PMCID: PMC7254495 DOI: 10.3390/microorganisms8040506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Mimiviridae is a group of viruses with large genomes and virions. Ecological relevance of Mimiviridae in marine environments has been increasingly recognized through the discoveries of novel isolates and metagenomic studies. To facilitate ecological profiling of Mimiviridae, we previously proposed a meta-barcoding approach based on 82 degenerate primer pairs (i.e., MEGAPRIMER) targeting the DNA polymerase gene of Mimiviridae. The method detected a larger number of operational taxonomic units (OTUs) in environmental samples than previous methods. However, it required large quantities of DNA and was laborious due to the use of individual primer pairs. Here, we examined coastal seawater samples using varying PCR conditions and purification protocols to streamline the MEGAPRIMER method. Mixing primer pairs in "cocktails" reduced the required amount of environmental DNA by 90%, while reproducing the results obtained by the original protocol. We compared the results obtained by the meta-barcoding approach with quantifications using qPCR for selected OTUs. This revealed possible amplification biases among different OTUs, but the frequency profiles for individual OTUs across multiple samples were similar to those obtained by qPCR. We anticipate that the newly developed MEGAPRIMER protocols will be useful for ecological investigation of Mimiviridae in a larger set of environmental samples.
Collapse
|
10
|
Gran-Stadniczeñko S, Krabberød AK, Sandaa RA, Yau S, Egge E, Edvardsen B. Seasonal Dynamics of Algae-Infecting Viruses and Their Inferred Interactions with Protists. Viruses 2019; 11:v11111043. [PMID: 31717498 PMCID: PMC6893440 DOI: 10.3390/v11111043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022] Open
Abstract
Viruses are a highly abundant, dynamic, and diverse component of planktonic communities that have key roles in marine ecosystems. We aimed to reveal the diversity and dynamics of marine large dsDNA viruses infecting algae in the Northern Skagerrak, South Norway through the year by metabarcoding, targeting the major capsid protein (MCP) and its correlation to protist diversity and dynamics. Metabarcoding results demonstrated a high diversity of algal viruses compared to previous metabarcoding surveys in Norwegian coastal waters. We obtained 313 putative algal virus operational taxonomic units (vOTUs), all classified by phylogenetic analyses to either the Phycodnaviridae or Mimiviridae families, most of them in clades without any cultured or environmental reference sequences. The viral community showed a clear temporal variation, with some vOTUs persisting for several months. The results indicate co-occurrences between abundant viruses and potential hosts during long periods. This study gives new insights into the virus-algal host dynamics and provides a baseline for future studies of algal virus diversity and temporal dynamics.
Collapse
Affiliation(s)
- Sandra Gran-Stadniczeñko
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
- Correspondence: ; Tel.: +47-22-85-70-38
| | - Anders K. Krabberød
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), 08003 Barcelona, Spain;
| | - Elianne Egge
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| |
Collapse
|
11
|
Li Y, Endo H, Gotoh Y, Watai H, Ogawa N, Blanc-Mathieu R, Yoshida T, Ogata H. The Earth Is Small for "Leviathans": Long Distance Dispersal of Giant Viruses across Aquatic Environments. Microbes Environ 2019; 34:334-339. [PMID: 31378760 PMCID: PMC6759346 DOI: 10.1264/jsme2.me19037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Giant viruses of ‘Megaviridae’ have the ability to widely disperse around the globe. We herein examined ‘Megaviridae’ communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.
Collapse
Affiliation(s)
- Yanze Li
- Institute for Chemical Research, Kyoto University
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| | | | - Nana Ogawa
- Graduate School of Agriculture, Kyoto University
| | | | | | | |
Collapse
|
12
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
13
|
Is the Virus Important? And Some Other Questions. Viruses 2018; 10:v10080442. [PMID: 30126254 PMCID: PMC6116253 DOI: 10.3390/v10080442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
The motivation for focusing on a specific virus is often its importance in terms of impact on human interests. The chlorella viruses are a notable exception and 40 years of research has made them the undisputed model system for large icosahedral dsDNA viruses infecting eukaryotes. Their status has changed from inconspicuous and rather odd with no ecological relevance to being the Phycodnaviridae type strain possibly affecting humans and human cognitive functioning in ways that remain to be understood. The Van Etten legacy is the backbone for research on Phycodnaviridae. After highlighting some of the peculiarities of chlorella viruses, we point to some issues and questions related to the viruses we choose for our research, our prejudices, what we are still missing, and what we should be looking for.
Collapse
|
14
|
Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. Taxon Richness of "Megaviridae" Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ 2018; 33:162-171. [PMID: 29806626 PMCID: PMC6031395 DOI: 10.1264/jsme2.me17203] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life.
Collapse
Affiliation(s)
- Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| | - Hitoshi Koyano
- School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology
| | | | - Nigel Grimsley
- Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities
| | - Susumu Goto
- Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| |
Collapse
|
15
|
Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology 2018; 518:423-433. [PMID: 29649682 DOI: 10.1016/j.virol.2018.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
The family Mimiviridae contains uncommonly large viruses, many of which were isolated using a free-living amoeba as a host. Although the genomes of these and other mimivirids that infect marine heterokont and haptophyte protists have now been sequenced, there has yet to be a genomic investigation of a mimivirid that infects a member of the Viridiplantae lineage (green algae and land plants). Here we characterize the 668-kilobase complete genome of TetV-1, a mimivirid that infects the cosmopolitan green alga Tetraselmis (Chlorodendrophyceae). The analysis revealed genes not previously seen in viruses, such as the mannitol metabolism enzyme mannitol 1-phosphate dehydrogenase, the saccharide degradation enzyme alpha-galactosidase, and the key fermentation genes pyruvate formate-lyase and pyruvate formate-lyase activating enzyme. The TetV genome is the largest sequenced to date for a virus that infects a photosynthetic organism, and its genes reveal unprecedented mechanisms by which viruses manipulate their host's metabolism.
Collapse
Affiliation(s)
- Christopher R Schvarcz
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States
| | - Grieg F Steward
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States.
| |
Collapse
|
16
|
Abstract
Viruses are integral to ecological and evolutionary processes, but we have a poor understanding of what drives variation in key traits across diverse viruses. For lytic viruses, burst size, latent period, and genome size are primary characteristics controlling host-virus dynamics. Here we synthesize data on these traits for 75 strains of phytoplankton viruses, which play an important role in global biogeochemistry. We find that primary traits of the host (genome size, growth rate) explain 40%-50% of variation in burst size and latent period. Specifically, burst size and latent period both exhibit saturating relationships versus the host∶virus genome size ratio, with both traits increasing at low genome size ratios while showing no relationship at high size ratios. In addition, latent period declines as host growth rate increases. We analyze a model of latent period evolution to explore mechanisms that could cause these patterns. The model predicts that burst size may often be set by the host genomic resources available for viral construction, while latent period evolves to permit this maximal burst size, modulated by host metabolic rate. These results suggest that general mechanisms may underlie the evolution of diverse viruses. Future extensions of this work could help explain viral regulation of host populations, viral influence on community structure and diversity, and viral roles in biogeochemical cycles.
Collapse
|
17
|
Abstract
Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum, ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum, P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms.
Collapse
|
18
|
Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep 2018; 8:1525. [PMID: 29367730 PMCID: PMC5784127 DOI: 10.1038/s41598-018-19678-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
In this study, we investigated virioplankton decay rates and their responses to changes in temperature and photosynthetically active radiation (PAR) in the western Pacific Ocean. The mean decay rates for total, high-fluorescence, and low-fluorescence viruses were 1.64 ± 0.21, 2.46 ± 0.43, and 1.57 ± 0.26% h−1, respectively. Higher temperatures and PAR increased viral decay rates, and the increases in the decay rates of low-fluorescence viruses were greater than those of high-fluorescence viruses. Our results revealed that low-fluorescence viruses are more sensitive to warming and increasing PAR than are high-fluorescence viruses, which may be related to differences in their biological characteristics, such as the density of packaged nucleic acid materials. Our study provided experimental evidence for the responses of natural viral communities to changes in global environmental factors (e.g., temperature and solar radiation).
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| | - Lulu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Yantao Liang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.,Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
19
|
The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure. Viruses 2017; 9:v9090238. [PMID: 28832530 PMCID: PMC5618004 DOI: 10.3390/v9090238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 12/02/2022] Open
Abstract
Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.
Collapse
|
20
|
Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol 2017; 91:JVI.00230-17. [PMID: 28446675 DOI: 10.1128/jvi.00230-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.
Collapse
|
21
|
Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship. Viruses 2017; 9:v9040084. [PMID: 28425942 PMCID: PMC5408690 DOI: 10.3390/v9040084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.
Collapse
|
22
|
Nissimov JI, Pagarete A, Ma F, Cody S, Dunigan DD, Kimmance SA, Allen MJ. Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery. Viruses 2017; 9:v9030052. [PMID: 28335474 PMCID: PMC5371807 DOI: 10.3390/v9030052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - António Pagarete
- Department of Biology, University of Bergen, Bergen, 7803, Norway.
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Sean Cody
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
23
|
Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, Gainer PJ, Gann ER, Heatherly HT, Lee J, Liang X, Liu J, Armes AC, Moniruzzaman M, Rice JH, Stough JMA, Tams RN, Williams EP, LeCleir GR. A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses 2017; 9:E46. [PMID: 28304329 PMCID: PMC5371801 DOI: 10.3390/v9030046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of infectious particles that challenge conventional thoughts concerning "what is a virus" has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning "giant viruses", with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host-virus systems that fall into this "giant" category, demonstrating that this field of inquiry presents great opportunities for future research.
Collapse
Affiliation(s)
- Steven W Wilhelm
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jordan T Bird
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Kyle S Bonifer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Benjamin C Calfee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Tian Chen
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Samantha R Coy
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - P Jackson Gainer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Eric R Gann
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Huston T Heatherly
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jasper Lee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Xiaolong Liang
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jiang Liu
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - April C Armes
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Mohammad Moniruzzaman
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - J Hunter Rice
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua M A Stough
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Robert N Tams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Evan P Williams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Gary R LeCleir
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
24
|
Wagstaff BA, Vladu IC, Barclay JE, Schroeder DC, Malin G, Field RA. Isolation and Characterization of a Double Stranded DNA Megavirus Infecting the Toxin-Producing Haptophyte Prymnesium parvum. Viruses 2017; 9:v9030040. [PMID: 28282930 PMCID: PMC5371795 DOI: 10.3390/v9030040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/31/2023] Open
Abstract
Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms globally, leading to large-scale fish kills that have severe ecological and economic implications. For the model haptophyte, Emiliania huxleyi, it has been shown that large dsDNA viruses play an important role in regulating blooms and therefore biogeochemical cycling, but much less work has been done looking at viruses that infect P. parvum, or the role that these viruses may play in regulating harmful algal blooms. In this study, we report the isolation and characterization of a lytic nucleo-cytoplasmic large DNA virus (NCLDV) collected from the site of a harmful P. parvum bloom. In subsequent experiments, this virus was shown to infect cultures of Prymnesium sp. and showed phylogenetic similarity to the extended Megaviridae family of algal viruses.
Collapse
Affiliation(s)
- Ben A Wagstaff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Iulia C Vladu
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - J Elaine Barclay
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | - Gill Malin
- Centre for Ocean and Atmospheric Studies, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
25
|
Moniruzzaman M, Gann ER, LeCleir GR, Kang Y, Gobler CJ, Wilhelm SW. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens. FEMS Microbiol Ecol 2016; 92:fiw058. [PMID: 26985013 DOI: 10.1093/femsec/fiw058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.
Collapse
Affiliation(s)
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, TN 37996, USA Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, TN 37996, USA
| | - Yoonja Kang
- School of Marine and Atmospheric Sciences, Stony Brook, NY 11794, USA
| | | | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, TN 37996, USA
| |
Collapse
|
26
|
Mirza S, Staniewski M, Short C, Long A, Chaban Y, Short S. Isolation and characterization of a virus infecting the freshwater algae Chrysochromulina parva. Virology 2015; 486:105-15. [DOI: 10.1016/j.virol.2015.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 11/26/2022]
|
27
|
Abstract
Viral ecology is a rapidly progressing area of research, as molecular methods have improved significantly for targeted research on specific populations and whole communities. To interpret and synthesize global viral diversity and distribution, it is feasible to assess whether macroecology concepts can apply to marine viruses. We review how viral and host life history and physical properties can influence viral distribution in light of biogeography and metacommunity ecology paradigms. We highlight analytical approaches that can be applied to emerging global data sets and meta-analyses to identify individual taxa with global influence and drivers of emergent properties that influence microbial community structure by drawing on examples across the spectrum of viral taxa, from RNA to ssDNA and dsDNA viruses.
Collapse
Affiliation(s)
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences.,Department of Botany, and.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
28
|
Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses 2015; 7:3937-53. [PMID: 26193304 PMCID: PMC4517135 DOI: 10.3390/v7072806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm) DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.). First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae). Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes), and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.
Collapse
|
29
|
Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa RA, Edvardsen B. Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 2015; 24:3026-42. [PMID: 25893259 PMCID: PMC4692090 DOI: 10.1111/mec.13160] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/06/2015] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Abstract
Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September–October (autumn) and lowest in April–May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3–5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters.
Collapse
Affiliation(s)
| | - Torill Vik Johannessen
- Marine Microbiology, Department of Biology, University of Bergen, PO Box 7803, 5006, Bergen, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway
| | - Wenche Eikrem
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway.,Norwegian Institute for Water Research, Gaustadalléen 21, 0349, Oslo, Norway
| | - Lucie Bittner
- CNRS FR3631, Institut de Biologie Paris-Seine, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005, Paris, France
| | - Aud Larsen
- Uni Research Environment, Thormøhlensgate 49b, N-5006, Bergen, Norway.,Hjort Centre for Marine Ecosystem Dynamics, N-5006, Bergen, Norway
| | - Ruth-Anne Sandaa
- Marine Microbiology, Department of Biology, University of Bergen, PO Box 7803, 5006, Bergen, Norway
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway
| |
Collapse
|