1
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
2
|
Abstract
BACKGROUND RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.
Collapse
Affiliation(s)
- Elizabeth M Hong
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
3
|
Advances in engineered trans-acting regulatory RNAs and their application in bacterial genome engineering. J Ind Microbiol Biotechnol 2019; 46:819-830. [PMID: 30887255 DOI: 10.1007/s10295-019-02160-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Small noncoding RNAs, a large class of ancient posttranscriptional regulators, are increasingly recognized and utilized as key modulators of gene expression in a broad range of microorganisms. Owing to their small molecular size and the central role of Watson-Crick base pairing in defining their interactions, structure and function, numerous diverse types of trans-acting RNA regulators that are functional at the DNA, mRNA and protein levels have been experimentally characterized. It has become increasingly clear that most small RNAs play critical regulatory roles in many processes and are, therefore, considered to be powerful tools for genetic engineering and synthetic biology. The trans-acting regulatory RNAs accelerate this ability to establish potential framework for genetic engineering and genome-scale engineering, which allows RNA structure characterization, easier to design and model compared to DNA or protein-based systems. In this review, we summarize recent advances in engineered trans-acting regulatory RNAs that are used in bacterial genome-scale engineering and in novel cellular capabilities as well as their implementation in wide range of biotechnological, biological and medical applications.
Collapse
|
4
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
5
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
6
|
Carter JR, Taylor S, Fraser TS, Kucharski CA, Dawson JL, Fraser MJ. Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain. PLoS One 2015; 10:e0139899. [PMID: 26580561 PMCID: PMC4651551 DOI: 10.1371/journal.pone.0139899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses.
Collapse
Affiliation(s)
- James R. Carter
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Samantha Taylor
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tresa S. Fraser
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cheryl A. Kucharski
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - James L. Dawson
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Malcolm J. Fraser
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|