1
|
Abraham PR, Gopinath T, Dhotre A, Kumar A. Commercial Enzyme-Linked Immunosorbent Assay Kit Is Useful for Detection of Recombinant and Secretory Nonstructural-1 Protein Antigen of Dengue Virus. Vector Borne Zoonotic Dis 2024; 24:817-825. [PMID: 39134458 DOI: 10.1089/vbz.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Background: Dengue is a mosquito-borne tropical disease, caused by the Dengue virus (DENV). It has become a severe problem and is a rising threat to public health. In this study, we have evaluated commercial Merilisa i Dengue NS1 Antigen kit (Meril LifeSciences India Pvt. Ltd.) to detect recombinant dengue virus 2 NS1 antigen (rDNS1Ag) and secreted forms of NS1 antigen (sDNS1Ag). Methods: To determine the detection limit of the kit, 100 nanogram (ng) to 0.001 ng rDNS1Ag was tested. The sensitivity and specificity of the kit was determined using recombinant NS1 antigens of all serotypes of DENV and other flaviviruses. For testing sDNS1Ag, the culture supernatant of the Vero cell lines infected with DENV-2 was tested. Further, a spiking experiment was carried out to check the sensitivity of the kit to detect rDNS1Ag in the pools of Aedes aegypti mosquitoes. Results: It was observed that the kit can detect the rDNS1Ag at 1 ng concentration. The kit was sensitive to detect NS1 antigen of DENV-1, DENV-2 and DENV-3 serotypes and specific for detection of only DNS1Ag as it did not cross-react with NS1 antigen of flaviviruses. The kit was sensitive to detect rDNS1Ag in the mosquito pools as well. In addition, the kit was able to detect the sDNS1Ag in Vero cell culture supernatant. Conclusions: Overall, we observed that the Merilisa i Dengue NS1 Ag kit is sensitive and specific for the detection of DNS1Ag both in recombinant and secretory forms.
Collapse
Affiliation(s)
| | | | - Akash Dhotre
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, India
| |
Collapse
|
2
|
Nasar S, Iftikhar S, Saleem R, Nadeem MS, Ali M. The N and C-terminal deleted variant of the dengue virus NS1 protein is a potential candidate for dengue vaccine development. Sci Rep 2024; 14:18883. [PMID: 39143088 PMCID: PMC11324946 DOI: 10.1038/s41598-024-65593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
NS1 is an elusive dengue protein, involved in viral replication, assembly, pathogenesis, and immune evasion. Its levels in blood plasm are positively related to disease severity like thrombocytopenia, hemorrhage, and vascular leakage. Despite its pathogenic roles, NS1 is being used in various vaccine formulations due to its sequence conservancy, ability to produce protective antibodies and low risk for inducing antibody-dependent enhancement. In this study, we have used bioinformatics tools and reported literature to develop an NS1 variant (dNS1). Molecular docking studies were performed to evaluate the receptor-binding ability of the NS1 and dNS1 with TLR4. NS1 and dNS1 (153 to 312 amino acid region) genes were cloned, expressed and protein was purified followed by refolding. Docking studies showed the binding of NS1 and dNS1 with the TLR4 receptor which suggests that N and C-terminal sequences of NS1 are not critical for receptor binding. Antibodies against NS1 and dNS1 were raised in rabbits and binding affinity of anti-dNS1 anti-NS1 sera was evaluated against both NS1 and dNS1. Similar results were observed through western blotting which highlight that N and C-terminal deletion of NS1 does not compromise the immunogenic potential of dNS1 hence, supports its use in future vaccine formulations as a substitute for NS1.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Rida Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Ali
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Lim HJ, Saha T, Ooi CW. Site-specific imprinting of dengue virus non-structural 1 antigen on a polydopamine-based sensing film for early detection and prognosis of dengue. Talanta 2024; 268:125376. [PMID: 37951180 DOI: 10.1016/j.talanta.2023.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Serum levels of dengue virus (DENV) non-structural 1 (NS1) antigen can serve as a valuable prognostic indicator of severe dengue infections. A quartz crystal microbalance (QCM)-based biosensor with a biomimetic recognition element was designed to quantitatively detect DENV NS1 as an early disease biomarker. To mitigate the reliance on costly viral antigens during the molecular imprinting process, a synthetic peptide mimicking a DENV NS1 epitope was used as a surrogate template for the synthesis of an epitope-imprinted polydopamine (EMIPDA) sensing film on the biosensor surface. The maximal frequency shift for DENV NS1 was obtained with an EMIPDA film synthesised using 5 mg mL-1 of dopamine monomer and 0.5 mg mL-1 of peptide template. The EMIPDA-QCM biosensor achieved low detection and quantitation limits of 0.091 μg mL-1 and 0.436 μg mL-1, respectively, allowing acute-phase detection of dengue and prognosis of the disease progression. The EMIPDA-QCM biosensor exhibited remarkable selectivity with up to 68-fold larger frequency responses towards DENV NS1 compared to a major serum protein. The site-specific imprinting approach not only enhanced the biosensing performance but also enabled a 26-fold cost reduction for biosensor functionalisation, providing a cost-effective strategy for label-free biosensing of the dengue biomarker via the biopolymer film.
Collapse
Affiliation(s)
- Hui Jean Lim
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Tridib Saha
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
4
|
Morales SV, Coelho GM, Ricciardi-Jorge T, Dorl GG, Zanluca C, Duarte Dos Santos CN. Development of a quantitative NS1 antigen enzyme-linked immunosorbent assay (ELISA) for Zika virus detection using a novel virus-specific mAb. Sci Rep 2024; 14:2544. [PMID: 38291109 PMCID: PMC10827715 DOI: 10.1038/s41598-024-52123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024] Open
Abstract
Viruses from the Flaviviridae family, such as Dengue virus (DENV), Yellow fever virus (YFV), and Zika virus (ZIKV) are notorious global public health problems. ZIKV emergence in Polynesia and the Americas from 2013 to 2016 raised concerns as new distinguishing features set it apart from previous outbreaks, including its association with neurological complications and heightened disease severity. Virus detection is impaired as cross-reactivity to other closely related orthoflaviviruses is common among commercially available diagnostic kits. While non-structural protein 1 (NS1) has been used as an early marker of DENV and West Nile virus (WNV) infection, little is known about NS1 expression during ZIKV infection. In the present work, we developed a NS1 capture ELISA using a novel ZIKV-specific monoclonal antibody to study NS1 expression dynamics in vitro in mosquito and human cell lines. While detectable in culture supernatants, higher concentrations of NS1 were predominantly cell-associated. To our knowledge, this is the first report of NS1 detection in human cells despite viral clearance over time. Tests with human samples need to be conducted to validate the applicability of NS1 detection for diagnosis, but overall, the tools developed in this work are promising for specific detection of acute ZIKV infection.
Collapse
Affiliation(s)
| | - Gabriela Mattoso Coelho
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | | | - Gisiane Gruber Dorl
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | | |
Collapse
|
5
|
Zhang S, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Zhang L, Yu Y, Chen S, Cheng A. Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front Immunol 2023; 14:1205002. [PMID: 37520540 PMCID: PMC10372224 DOI: 10.3389/fimmu.2023.1205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The genus Flavivirus contains a wide variety of viruses that cause severe disease in humans, including dengue virus, yellow fever virus, Zika virus, West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus. Nonstructural protein 1 (NS1) is a glycoprotein that encodes a 352-amino-acid polypeptide and has a molecular weight of 46-55 kDa depending on its glycosylation status. NS1 is highly conserved among multiple flaviviruses and occurs in distinct forms, including a dimeric form within the endoplasmic reticulum, a cell-associated form on the plasma membrane, or a secreted hexameric form (sNS1) trafficked to the extracellular matrix. Intracellular dimeric NS1 interacts with other NSs to participate in viral replication and virion maturation, while extracellular sNS1 plays a critical role in immune evasion, flavivirus pathogenesis and interactions with natural vectors. In this review, we provide an overview of recent research progress on flavivirus NS1, including research on the structural details, the secretory pathways in mammalian and mosquito cells and the multiple functions in viral replication, immune evasion, pathogenesis and interaction with natural hosts, drawing together the previous data to determine the properties of this protein.
Collapse
Affiliation(s)
- Senzhao Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
6
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Besson B, Lezcano OM, Overheul GJ, Janssen K, Spruijt CG, Vermeulen M, Qu J, van Rij RP. Arbovirus-vector protein interactomics identifies Loquacious as a co-factor for dengue virus replication in Aedes mosquitoes. PLoS Pathog 2022; 18:e1010329. [PMID: 36074777 PMCID: PMC9488832 DOI: 10.1371/journal.ppat.1010329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/20/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Efficient virus replication in Aedes vector mosquitoes is essential for the transmission of arboviral diseases such as dengue virus (DENV) in human populations. Like in vertebrates, virus-host protein-protein interactions are essential for viral replication and immune evasion in the mosquito vector. Here, 79 mosquito host proteins interacting with DENV non-structural proteins NS1 and NS5 were identified by label-free mass spectrometry, followed by a functional screening. We confirmed interactions with host factors previously observed in mammals, such as the oligosaccharyltransferase complex, and we identified protein-protein interactions that seem to be specific for mosquitoes. Among the interactors, the double-stranded RNA (dsRNA) binding protein Loquacious (Loqs), an RNA interference (RNAi) cofactor, was found to be essential for efficient replication of DENV and Zika virus (ZIKV) in mosquito cells. Loqs did not affect viral RNA stability or translation of a DENV replicon and its proviral activity was independent of its RNAi regulatory activity. Interestingly, Loqs colocalized with DENV dsRNA replication intermediates in infected cells and directly interacted with high affinity with DENV RNA in the 3' untranslated region in vitro (KD = 48-62 nM). Our study provides an interactome for DENV NS1 and NS5 and identifies Loqs as a key proviral host factor in mosquitoes. We propose that DENV hijacks a factor of the RNAi mechanism for replication of its own RNA.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oscar M. Lezcano
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kirsten Janssen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia G. Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jieqiong Qu
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
9
|
Alcalá AC, Contreras MA, Cuevas-Juárez E, Ramírez OT, Palomares LA. Effect of sericin, a silk derived protein, on the amplification of Zika virus in insect and mammalian cell cultures. J Biotechnol 2022; 353:28-35. [PMID: 35623476 DOI: 10.1016/j.jbiotec.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Sericin, a silk-derived non-immunogenic protein, has been used to improve cell culture performance by increasing viability, cell concentration, and promoting adherence of several cell lines. Here, we hypothesized that the properties of sericin can enhance the amplification of flaviviruses in cell cultures. The propagation of flavivirus is inefficient and limits scientific research. Zika virus (ZIKV) is an important human pathogen that has been widely studied because of its high impact on public health. There is a need to amplify Zika virus both for research and vaccine development. In this work, we show that sericin improves ZIKV amplification in insect (C6/36) and mammalian (Vero) cell cultures, and that it has a cryoprotectant capacity. Supplementation of cell culture media with sericin at 80 µg/mL resulted in a significant increase of 1 log in the concentration of ZIKV infectious particles produced from both cell lines. Furthermore, final virus yields increased between 5 and 10-fold in Vero cells and between 7 and 23-fold in C6/36 cells when sericin was supplemented, compared to control conditions. These results show that sericin is an effective supplement to increase ZIKV production by Vero and C6/36 cells. Additionally, sericin was a suitable cryoprotective agent, and hence an alternative to FBS and DMSO, for the cryopreservation of C6/36 cells but not for Vero cells.
Collapse
Affiliation(s)
- Ana C Alcalá
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha A Contreras
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
10
|
Abstract
The dengue virus NS1 is a multifunctional protein that forms part of replication complexes. NS1 is also secreted, as a hexamer, to the extracellular milieu. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms. Cell binding and internalization of soluble NS1 result in endothelial hyperpermeability and in the downregulation of the innate immune response. In this work, we report that the HDL scavenger receptor B1 (SRB1) in human hepatic cells and a scavenger receptor B1-like in mosquito C6/36 cells act as cell surface binding receptors for dengue virus NS1. The presence of the SRB1 on the plasma membrane of C6/36 cells, as well as in Huh7 cells, was demonstrated by confocal microscopy. The internalization of NS1 can be efficiently blocked by anti-SRB1 antibodies, and previous incubation of the cells with HDL significantly reduces NS1 internalization. Significant reduction in NS1 internalization was observed in C6/36 cells transfected with siRNAs specific for SRB1. In addition, the transient expression of SRB1 in Vero cells, which lacks the receptor, allows NS1 internalization in these cells. Direct interaction between soluble NS1 and the SRB1 in Huh7 and C6/36 cells was demonstrated in situ by proximity ligation assays and in vitro by surface plasmon resonance. Finally, results are presented indicating that the SRB1 also acts as a cell receptor for Zika virus NS1. These results demonstrate that dengue virus NS1, a bona fide lipoprotein, usurps the HDL receptor for cell entry and offers explanations for the altered serum lipoprotein homeostasis observed in dengue patients. IMPORTANCE Dengue is the most common viral disease transmitted to humans by mosquitoes. The dengue virus NS1 is a multifunctional glycoprotein necessary for viral replication. NS1 is also secreted as a hexameric lipoprotein and circulates in high concentrations in the sera of patients. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms, including favoring of virus replication in hepatocytes and dendritic cells and disruption of the endothelial glycocalyx leading to hyperpermeability. Those last actions require NS1 internalization. Here, we identify the scavenger cell receptor B1, as the cell-binding receptor for dengue and Zika virus NS1, in cultured liver and in mosquito cells. The results indicate that flavivirus NS1, a bona fide lipoprotein, usurps the human HDL receptor and may offer explanations for the alterations in serum lipoprotein homeostasis observed in dengue patients.
Collapse
|
11
|
Rodriguez MC, Cime-Castillo J, Argotte-Ramos R, Vargas V, Correa-Morales F, Sánchez-Tejeda G, Lanz-Mendoza H. Detection of NS1 protein from dengue virus in excreta and homogenates of wild-caught Aedes aegypti mosquitoes using monoclonal antibodies. Pathog Dis 2022; 80:6502351. [PMID: 35020898 DOI: 10.1093/femspd/ftac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue fever is one of the most devastating infectious diseases worldwide. Development of methods for DENV detection in mosquitoes to assess prevalence as a preliminary screen for entomological surveillance in endemic regions of DENV will certainly contribute to the control of the disease. Production of a monoclonal antibody against the NS1 viral protein was generated using recombinant NS1 protein and used to detect and analyze DENV in both excreta and total homogenates from Aedes aegypti mosquitoes. Results demonstrated expression of NS1 in excreta of DENV laboratory infected mosquitoes and homogenates from field mosquitoes infected with DENV. The immunodetection method reported here represents a first-line strategy for assessing the prevalence of DENV in mosquitoes, for entomological surveillance in endemic regions of dengue. Detection of DENV prevalence in field mosquitoes could have an impact on vector surveillance measures to interrupt dengue transmission.
Collapse
Affiliation(s)
- Maria Carmen Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas; Instituto Nacional de Salud Pública; Cuernavaca, Morelos, Mexico. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Jorge Cime-Castillo
- Centro de Investigación Sobre Enfermedades Infecciosas; Instituto Nacional de Salud Pública; Cuernavaca, Morelos, Mexico. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Rocío Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas; Instituto Nacional de Salud Pública; Cuernavaca, Morelos, Mexico. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Valeria Vargas
- Centro de Investigación Sobre Enfermedades Infecciosas; Instituto Nacional de Salud Pública; Cuernavaca, Morelos, Mexico. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Fabian Correa-Morales
- Dirección del Programa de Enfermedades Transmitidas por Vector; Centro Nacional de Programas Preventivos y Control de Enfermedades; Secretaría de Salud México. Benjamin Franklin 132. C.P. 11800. Ciudad de México. Mexico
| | - Gustavo Sánchez-Tejeda
- Dirección del Programa de Enfermedades Transmitidas por Vector; Centro Nacional de Programas Preventivos y Control de Enfermedades; Secretaría de Salud México. Benjamin Franklin 132. C.P. 11800. Ciudad de México. Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas; Instituto Nacional de Salud Pública; Cuernavaca, Morelos, Mexico. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
13
|
Bachour Junior B, Batistuti MR, Pereira AS, de Sousa Russo EM, Mulato M. Electrochemical aptasensor for NS1 detection: Towards a fast dengue biosensor. Talanta 2021; 233:122527. [PMID: 34215030 DOI: 10.1016/j.talanta.2021.122527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most commonly neglected tropical diseases transmitted by Aedes aegypti infected with Dengue virus. This virus belongs to the gender Flavivirus and produces a non-structural protein 1 (NS1), which is an important biomarker found at high levels in blood in early disease stage. Therefore, this study focused on the development of an electrochemical biosensor for NS1 detection using DNA aptamers. Gold electrodes were co-immobilized with specific aptamers and 6-mercapto-1-hexanol (MCH) to obtain a self-assembled monolayer. The molar ratio between aptamers and MCH was optimized and the platform characterized by electrochemical impedance spectroscopy and atomic force microscopy. Bovine serum albumin was added in NS1 solution to stabilize it and block the surface to avoid non-specific interactions. The biosensor performance was tested with NS1 protein serotype 4 (in phosphate saline buffer and human serum) and with a solution of serotype 1 in human serum. The results showed a sensitivity of 2.9%, 2.7% and 1.7% per decade, respectively, and low limit of detection (0.05, 0.022 and 0.025 ng/mL). The platform was also tested with Envelope protein as negative control. Furthermore, the aptamer sensor was able to detect NS1 in clinical range and it is a promising candidate for a new class for miniaturized point-of-care device for different Dengue serotypes.
Collapse
Affiliation(s)
- Bassam Bachour Junior
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil
| | - Marina Ribeiro Batistuti
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| | - Aline Sanches Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Marcelo Mulato
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
14
|
Kuo L, Jaeger AS, Banker EM, Bialosuknia SM, Mathias N, Payne AF, Kramer LD, Aliota MT, Ciota AT. Reversion to ancestral Zika virus NS1 residues increases competence of Aedes albopictus. PLoS Pathog 2020; 16:e1008951. [PMID: 33052957 PMCID: PMC7588074 DOI: 10.1371/journal.ppat.1008951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.
Collapse
Affiliation(s)
- Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Elyse M. Banker
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Nicholas Mathias
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anne F. Payne
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| |
Collapse
|
15
|
Cheng L, Liu WL, Li HH, Su MP, Wu SC, Chen HW, Pan CY, Tsai JJ, Chen CH. Releasing Intracellular NS1 from Mosquito Cells for the Detection of Dengue Virus-Infected Mosquitoes. Viruses 2020; 12:v12101105. [PMID: 33003584 PMCID: PMC7599882 DOI: 10.3390/v12101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), the pathogen that causes dengue fever, is mainly transmitted by Aedes aegypti. Surveillance of infected mosquitoes is a major component of integrated mosquito control methods for reducing the risk of vector-born disease outbreaks. However, a specialized rapid test for DENV detection in mosquitoes is not currently available. Utilizing immunoblotting, we found that the secretion of NS1 from both a DENV-infected mosquito cell line and mosquito bodies was below the detection threshold. However, when Triton X-100 was used to lyse infected mosquitoes, intracellular NS1 was released, and could then be effectively detected by the NS1 rapid test. The distribution of DENV NS1 in intrathoracically infected mosquitoes was different from that of orally infected mosquitoes. Next, we performed sensitivity tests by bisecting mosquitoes longitudinally; one half of each mosquito was subjected to the NS1 rapid test while the other half was used for qPCR confirmation. This modified test had a sensitivity of nearly 90% from five days post-infection onwards, while DENV had escaped from the midgut barrier. This adapted test offers a valuable, easy-to-use tool for mosquito surveillance, which is a crucial component of DENV disease control.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Institution of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Matthew P. Su
- Department of Biological Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110001, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung 800852, Taiwan;
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.-J.T.); (C.-H.C.)
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
- Correspondence: (J.-J.T.); (C.-H.C.)
| |
Collapse
|
16
|
Shrivastava S, Solaskar A, Gosavi M, Tiraki D, Mishra AC, Arankalle VA. Evaluation of NS1-Detection-Based Cell Culture Method for Isolation of Dengue Viruses from Clinical Samples. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42399-020-00266-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Kholodilov IS, Litov AG, Klimentov AS, Belova OA, Polienko AE, Nikitin NA, Shchetinin AM, Ivannikova AY, Bell-Sakyi L, Yakovlev AS, Bugmyrin SV, Bespyatova LA, Gmyl LV, Luchinina SV, Gmyl AP, Gushchin VA, Karganova GG. Isolation and Characterisation of Alongshan Virus in Russia. Viruses 2020; 12:v12040362. [PMID: 32224888 PMCID: PMC7232203 DOI: 10.3390/v12040362] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
In recent decades, many new flavi-like viruses have been discovered predominantly in different invertebrates and, as was recently shown, some of them may cause disease in humans. The Jingmenvirus (JMV) group holds a special place among flaviviruses and flavi-like viruses because they have a segmented ssRNA(+) genome. We detected Alongshan virus (ALSV), which is a representative of the JMV group, in ten pools of adult Ixodes persulcatus ticks collected in two geographically-separated Russian regions. Three of the ten strains were isolated in the tick cell line IRE/CTVM19. One of the strains persisted in the IRE/CTVM19 cells without cytopathic effect for three years. Most ALSV virions purified from tick cells were spherical with a diameter of approximately 40.5 nm. In addition, we found smaller particles of approximately 13.1 nm in diameter. We obtained full genome sequences of all four segments of two of the isolated ALSV strains, and partial sequences of one segment from the third strain. Phylogenetic analysis on genome segment 2 of the JMV group clustered our novel strains with other ALSV strains. We found evidence for the existence of a novel upstream open reading frame in the glycoprotein-coding segment of ALSV and other members of the JMV group.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (A.S.K.); (L.V.G.)
- Laboratory of Biology and Indication of Arboviruses, Department Ivanovsky Institute of Virology, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Nikolai A. Nikitin
- Faculty of Biology, Lomonosov MSU, 119991 Moscow, Russia; (N.A.N.); (V.A.G.)
| | - Alexey M. Shchetinin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Lesley Bell-Sakyi
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Sergey V. Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Liubov A. Bespyatova
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Larissa V. Gmyl
- Laboratory of Biochemistry, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (A.S.K.); (L.V.G.)
| | - Svetlana V. Luchinina
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 454092 Chelyabinsk, Russia;
| | - Anatoly P. Gmyl
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
| | - Vladimir A. Gushchin
- Faculty of Biology, Lomonosov MSU, 119991 Moscow, Russia; (N.A.N.); (V.A.G.)
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia;
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, 108819 Moscow, Russia; (I.S.K.); (A.G.L.); (O.A.B.); (A.E.P.); (A.Y.I.); (A.S.Y.); (A.P.G.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-841-9327
| |
Collapse
|
18
|
Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol 2019; 92:941-955. [PMID: 31784997 DOI: 10.1002/jmv.25646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Dengue virus is an arbovirus belonging to class Flaviviridae Its clinical manifestation ranges from asymptomatic to extreme conditions (dengue hemorrhagic fever/dengue shock syndrome). A lot of research has been done on this ailment, yet there is no effective treatment available for the disease. This review provides the systematic understanding of all dengue proteins, role of its structural proteins (C-protein, E-protein, prM) in virus entry, assembly, and secretion in host cell, and nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5) in viral assembly, replication, and immune evasion during dengue progression and pathogenesis. Furthermore, the review has highlighted the controversies related to the only commercially available dengue vaccine, that is, Dengvaxia, and the risk associated with it. Lastly, it provides an insight regarding various approaches for developing an effective anti-dengue treatment.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
19
|
Suzuki K, Nakayama EE, Saito A, Egawa A, Sato T, Phadungsombat J, Rahim R, Hasan A, Iwamoto H, Rahman M, Shioda T. Evaluation of novel rapid detection kits for dengue virus NS1 antigen in Dhaka, Bangladesh, in 2017. Virol J 2019; 16:102. [PMID: 31416485 PMCID: PMC6694664 DOI: 10.1186/s12985-019-1204-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is one of the biggest challenges for human health in the world. In addition, a secondary DENV infection sometimes causes dengue hemorrhagic fever (DHF), which frequently leads to death. For this reason, accurate diagnosis record management is useful for prediction of DHF. Therefore, the demand for DENV rapid diagnosis tests (RDTs) is increasing because these tests are easy and rapid to use. However, commercially available RDTs often show low sensitivity for DENV and cross-reactivity against other flaviviruses, especially Zika virus (ZIKV). METHODS We developed two types of novel DENV non-structural protein 1 (NS1) detection RDTs, designated TKK-1st and TKK-2nd kits. Specificities of the monoclonal antibodies (MAbs) used in these kits were confirmed by enzyme-linked immuno-sorbent assay (ELISA), dot blot, and western blot using recombinant NS1 proteins and synthetic peptides. For evaluation of sensitivity, specificity, and cross-reactivity of the novel DENV NS1 RDTs, we first used cultured DENV and other flaviviruses, ZIKV and Japanese encephalitis virus (JEV). We then used clinical specimens obtained in Bangladesh in 2017 for further evaluation of kit sensitivity and specificity in comparison with commercially available RDTs. In addition, RNA extracted from sera were used for viral genome sequencing and genotyping. RESULTS Epitopes of three out of four MAbs used in the two novel RDTs were located in amino acid positions 100 to 122 in the NS1 protein, a region that shows low levels of homology with other flaviviruses. Our new kits showed high levels of sensitivity against various serotypes and genotypes of DENV and exhibited high levels of specificity without cross-reactivity against ZIKV and JEV. In clinical specimens, our RDTs showed sensitivities of 96.0% (145/151, TKK-1st kit) and 96.7% (146/151, TKK-2nd kit), and specificities of 98.0% (98/100, TKK-1st kit and TKK-2nd kit). On the other hand, in the case of the commercially available SD Bioline RDT, sensitivity was 83.4% (126/151) and specificity was 99.0% (99/100) against the same clinical specimens. CONCLUSIONS Our novel DENV NS1-targeting RDTs demonstrated high levels of sensitivity and lacked cross-reactivity against ZIKV and JEV compared with commercially available RDTs.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
- POCT Business Unit, TANAKA Kikinzoku Kogyo K.K, 2-73, Shinmachi, Hiratsuka, Kanagawa 254-0076 Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Akatsuki Saito
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Akio Egawa
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Tairyu Sato
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases, Mahidol University, 420/6 Ratchawithi road, Ratchathewi, Bangkok, 10400 Thailand
| | - Rummana Rahim
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka, 1229 Bangladesh
| | - Abu Hasan
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka, 1229 Bangladesh
| | - Hisahiko Iwamoto
- POCT Business Unit, TANAKA Kikinzoku Kogyo K.K, 2-73, Shinmachi, Hiratsuka, Kanagawa 254-0076 Japan
| | - Mizanur Rahman
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka, 1229 Bangladesh
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
20
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
21
|
Kim YH, Kim TY, Park JS, Park JS, Lee J, Moon J, Chong CK, Junior IN, Ferry FR, Ahn HJ, Bhatt L, Nam HW. Development and Clinical Evaluation of a Rapid Diagnostic Test for Yellow Fever Non-Structural Protein 1. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:283-290. [PMID: 31284351 PMCID: PMC6616167 DOI: 10.3347/kjp.2019.57.3.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022]
Abstract
A rapid diagnostic test (RDT) kit was developed to detect non-structural protein 1 (NS1) of yellow fever virus (YFV) using monoclonal antibody. NS1 protein was purified from the cultured YFV and used to immunize mice. Monoclonal antibody to NS1 was selected and conjugated with colloidal gold to produce the YFV NS1 RDT kit. The YFV RDTs were evaluated for sensitivity and specificity using positive and negative samples of monkeys from Brazil and negative human blood samples from Korea. Among monoclonal antibodies, clones 3A11 and 3B7 proved most sensitive, and used for YFV RDT kit. Diagnostic accuracy of YFV RDT was fairly high; Sensitivity was 0.0% and specificity was 100% against Dengue viruses type 2 and 3, Zika, Chikungunya and Mayaro viruses. This YFV RDT kit could be employed as a test of choice for point-of-care diagnosis and large scale surveys of YFV infection under clinical or field conditions in endemic areas and on the globe.
Collapse
Affiliation(s)
- Yeong Hoon Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | | | | | | | | | | | - Ivan Neves Junior
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Fernando Raphael Ferry
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Hye-Jin Ahn
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Lokraj Bhatt
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
22
|
Budiutari NN, Dachlan YP, Nugraha J. OVERVIEW OF NUCLEAR FACTOR-KB (NF-KB) AND NON-STRUCTURAL PROTEIN 1 (NS1) IN PATIENTS WITH DENGUE FEVER IN PREMIER HOSPITAL, SURABAYA. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i5.9955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue fever (DF) is an acute viral fever caused by RNA virus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. DF is also called viral arthropod-borne disease and is accompanied by headaches, joint and muscle pain. The main target of dengue infection is macrophages or monocytes and dendritic cells (DC). Infected DC is caused the viral replication and the endocytosis into endosomal, easier, thus inducing the activation of NF-ĸB transcription factor to produce proinflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukin-1 (IL-1), IL-6, IL-12 and chemokine. NF-kB is one of the transcription factors involved in the regulation of the expression of various cytokines, chemokines and anti/pro-apoptotic proteins during infection and act as indicator of disease severity. Infected DC cells are secreted NS1 protein which is the co-factor needed for viral replication and can be detected in the first eight days. The level will be higher in the initial phase of fever. The purpose of this study was to analyze the description of NF-kB and NS1 levels in the serum of patients with dengue fever through observational analytic studies through a cross-sectional approach. This study was done on 40 patients with dengue fever and 10 healthies people as negative controls. NS1 was analyzed in serum of Panbio rapid test and NF-kB level were measured by sandwich ELISA. The results are showed positive and negative NS1 results in dengue fever patients. The average NF-kB serum level in dengue fever patients was found to be higher than the control. NF-ĸB level in negative NS1 was higher than the NS1 positive group. It is showed that NS1 is detected both in the acute phase. The detection of NF-ĸB is showed the involvement of transcription factors in the development of dengue virus infection and has a protective role for host cells.
Collapse
|
23
|
Rosales Ramirez R, Ludert JE. The Dengue Virus Nonstructural Protein 1 (NS1) Is Secreted from Mosquito Cells in Association with the Intracellular Cholesterol Transporter Chaperone Caveolin Complex. J Virol 2019; 93:e01985-18. [PMID: 30463973 PMCID: PMC6364000 DOI: 10.1128/jvi.01985-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus of the family Flaviviridae The RNA viral genome encodes three structural and seven nonstructural proteins. Nonstructural protein 1 (NS1) is a multifunctional protein actively secreted in vertebrate and mosquito cells during infection. In mosquito cells, NS1 is secreted in a caveolin-1-dependent manner by an unconventional route. The caveolin chaperone complex (CCC) is a cytoplasmic complex formed by caveolin-1 and the chaperones FKBP52, Cy40, and CyA and is responsible for the cholesterol traffic inside the cell. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 associates with and relies on the CCC for secretion. Treatment of mosquito cells with classic secretion inhibitors, such as brefeldin A, Golgicide A, and Fli-06, showed no effect on NS1 secretion but significant reductions in recombinant luciferase secretion and virion release. Silencing the expression of CAV-1 or FKBP52 with short interfering RNAs or the inhibition of CyA by cyclosporine resulted in significant decrease in NS1 secretion, again without affecting virion release. Colocalization, coimmunoprecipitation, and proximity ligation assays indicated that NS1 colocalizes and interacts with all proteins of the CCC. In addition, CAV-1 and FKBP52 expression was found augmented in DENV-infected cells. Results obtained with Zika virus-infected cells suggest that in mosquito cells, ZIKV NS1 follows the same secretory pathway as that observed for DENV NS1. These results uncover important differences in the dengue virus-cell interactions between the vertebrate host and the mosquito vector as well as novel functions for the chaperone caveolin complex.IMPORTANCE The dengue virus protein NS1 is secreted efficiently from both infected vertebrate and mosquito cells. Previously, our group reported that NS1 secretion in mosquito cells follows an unconventional secretion pathway dependent on caveolin-1. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 secretion takes place in association with the chaperone caveolin complex, a complex formed by caveolin-1 and the chaperones FKBP52, CyA, and Cy40, which are in charge of cholesterol transport inside the cell. Results obtained with ZIKV-infected mosquito cells suggest that ZIKV NS1 is released following an unconventional secretory route in association with the chaperone caveolin complex. These results uncover important differences in the virus-cell interactions between the vertebrate host and the mosquito vector, as well as novel functions for the chaperone caveolin complex. Moreover, manipulation of the NS1 secretory route may prove a valuable strategy to combat these two mosquito-borne diseases.
Collapse
Affiliation(s)
- Romel Rosales Ramirez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
24
|
Secretion of Nonstructural Protein 1 of Dengue Virus from Infected Mosquito Cells: Facts and Speculations. J Virol 2018; 92:JVI.00275-18. [PMID: 29720514 DOI: 10.1128/jvi.00275-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dengue virus nonstructural protein 1 (NS1) is a multifunctional glycoprotein. For decades, the notion in the field was that NS1 is secreted exclusively from vertebrate cells and not from mosquito cells. However, recent evidence shows that mosquito cells also secrete NS1 efficiently. In this review, we discuss the evidence for secretion of NS1 of dengue virus, and of other flaviviruses, from mosquito cells, differences between NS1 secreted from mosquito and NS1 secreted from vertebrate cells, and possible roles of soluble NS1 in the insect flavivirus vector.
Collapse
|
25
|
Strand-like structures and the nonstructural proteins 5, 3 and 1 are present in the nucleus of mosquito cells infected with dengue virus. Virology 2018; 515:74-80. [DOI: 10.1016/j.virol.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
26
|
Alcalá AC, Hernández-Bravo R, Medina F, Coll DS, Zambrano JL, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted from infected mosquito cells via a non-classical caveolin-1-dependent pathway. J Gen Virol 2017; 98:2088-2099. [DOI: 10.1099/jgv.0.000881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Ana C. Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Raiza Hernández-Bravo
- Exploration and Production Research Office, Mexican Petroleum Institute (IMP), Mexico City, Mexico
| | - Fernando Medina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - David S. Coll
- Center of Chemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Jose L. Zambrano
- Center of Microbiology and Cell Biology, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa M. del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| |
Collapse
|
27
|
Trujillo-Ocampo A, Cázares-Raga FE, del Angel RM, Medina-Ramírez F, Santos-Argumedo L, Rodríguez MH, Hernández-Hernández FDLC. Participation of 14-3-3ε and 14-3-3ζ proteins in the phagocytosis, component of cellular immune response, in Aedes mosquito cell lines. Parasit Vectors 2017; 10:362. [PMID: 28764795 PMCID: PMC5540338 DOI: 10.1186/s13071-017-2267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/03/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. RESULTS We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. CONCLUSION The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rosa María del Angel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Fernando Medina-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Mario H. Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| |
Collapse
|
28
|
Thiemmeca S, Tamdet C, Punyadee N, Prommool T, Songjaeng A, Noisakran S, Puttikhunt C, Atkinson JP, Diamond MS, Ponlawat A, Avirutnan P. Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin-Mediated Neutralization. THE JOURNAL OF IMMUNOLOGY 2016; 197:4053-4065. [PMID: 27798151 DOI: 10.4049/jimmunol.1600323] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Flavivirus nonstructural protein 1 (NS1) is a unique secreted nonstructural glycoprotein. Although it is absent from the flavivirus virion, intracellular and extracellular forms of NS1 have essential roles in viral replication and the pathogenesis of infection. The fate of NS1 in insect cells has been more controversial, with some reports suggesting it is exclusively cell associated. In this study, we confirm NS1 secretion from cells of insect origin and characterize its physical, biochemical, and functional properties in the context of dengue virus (DENV) infection. Unlike mammalian cell-derived NS1, which displays both high mannose and complex type N-linked glycans, soluble NS1 secreted from DENV-infected insect cells contains only high mannose glycans. Insect cell-derived secreted NS1 also has different physical properties, including smaller and more heterogeneous sizes and the formation of less stable NS1 hexamers. Both mammalian and insect cell-derived NS1 bind to complement proteins C1s, C4, and C4-binding protein, as well as to a novel partner, mannose-binding lectin. Binding of NS1 to MBL protects DENV against mannose-binding lectin-mediated neutralization by the lectin pathway of complement activation. As we detected secreted NS1 and DENV together in the saliva of infected Aedes aegypti mosquitoes, these findings suggest a mechanism of viral immune evasion at the very earliest phase of infection.
Collapse
Affiliation(s)
- Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Graduate Program, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chamaiporn Tamdet
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; .,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| |
Collapse
|