1
|
Mostafa A, Naguib MM, Nogales A, Barre RS, Stewart JP, García-Sastre A, Martinez-Sobrido L. Avian influenza A (H5N1) virus in dairy cattle: origin, evolution, and cross-species transmission. mBio 2024; 15:e0254224. [PMID: 39535188 PMCID: PMC11633217 DOI: 10.1128/mbio.02542-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Since the emergence of highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.3.4.4b as a novel reassortant virus from subtype H5N8, the virus has led to a massive number of outbreaks worldwide in wild and domestic birds. Compared to the parental HPAIV H5N8 clade 2.3.4.4b, the novel reassortant HPAIV H5N1 displayed an increased ability to escape species barriers and infect multiple mammalian species, including humans. The virus host range has been recently expanded to include ruminants, particularly dairy cattle in the United States, where cattle-to-cattle transmission was reported. As with the avian 2.3.4.4.b H5N1 viruses, the cattle-infecting virus was found to transmit from cattle to other contact animals including cats, raccoons, rodents, opossums, and poultry. Although replication of the virus in cows appears to be mainly confined to the mammary tissue, with high levels of viral loads detected in milk, infected cats and poultry showed severe respiratory disease, neurologic signs, and eventually died. Furthermore, several human infections with HPAIV H5N1 have also been reported in dairy farm workers and were attributed to exposures to infected dairy cattle. This is believed to represent the first mammalian-to-human transmission report of the HPAIV H5N1. Fortunately, infection in humans and cows, as opposed to other animals, appears to be mild in most cases. Nevertheless, the H5N1 bovine outbreak represents the largest outbreak of the H5N1 in a domestic mammal close to humans, increasing the risk that this already mammalian adapted H5N1 further adapts to human-to-human transmission and starts a pandemic. Herein, we discuss the epidemiology, evolution, pathogenesis, and potential impact of the recently identified HPAIV H5N1 clade 2.3.4.4b in dairy cattle in the United States. Eventually, interdisciplinary cooperation under a One Health framework is required to be able to control this ongoing HPAIV H5N1 outbreak to stop it before further expansion of its host range and geographical distribution.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mahmoud M. Naguib
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, United Kingdom
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Ramya S. Barre
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, United Kingdom
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
3
|
Zhou J, Rong XL, Cao X, Tang Q, Liu D, Jin YH, Shi XX, Zhong M, Zhao Y, Yang Y. Assembly of Poly(ethylene glycol)ylated Oleanolic Acid on a Linear Polymer as a Pseudomucin for Influenza Virus Inhibition and Adsorption. Biomacromolecules 2022; 23:3213-3221. [PMID: 35797332 DOI: 10.1021/acs.biomac.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimicry of the mucin barrier function is an efficient strategy to counteract influenza. We report the simple aminolyzation of poly(methyl vinyl ether-alt-maleic anhydride) (PM) using amine-terminated poly(ethylene glycol)ylated oleanolic acid (OAPEG) to mimic the mucin structure and its adsorption of the influenza virus. Direct interactions between influenza hemagglutinin (HA) and the prepared macromolecule evaluated by surface plasmon resonance and isothermal titration calorimetry demonstrated that the multivalent presentation of OAPEG on PM enhanced the binding affinity to HA with a decrease in KD of approximately three orders of magnitude compared with monomeric OAPEG. Moreover, hemagglutination inhibition assay, viral growth inhibition assay, and cytopathic effect reduction assay indicated that the nonglycosylated polymer could mimic natural heavily glycosylated mucin and thus promote the attachment of the virus in a subnanomolar range. Further investigation of the antiviral effects via time-of-addition assay, dynamic light scattering experiments, and transmission electron microscopy photographs indicated that the pseudomucin could adsorb the virion particles and synergistically inhibit the early attachment and final release steps of the influenza infection cycle. These findings demonstrate the effectiveness of the macromolecule in the physical sequestration and prevention of viral infection. Notably, due to its structural similarities with mucin, the biomacropolymer also has the potential for the rational design of antiviral drugs, influenza adsorbents, or filtration materials and the construction of model systems to explore protection against other pathogenic viruses.
Collapse
Affiliation(s)
- JiaPing Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.,Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue-Lin Rong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xuan Cao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Qi Tang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Dong Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yin-Hua Jin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xiao-Xiao Shi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ming Zhong
- Medical College of Shaoguan University, Shaoguan, Guangdong Province 512026, China
| | - YueTao Zhao
- School of Life Sciences, Central South University, Changsha, Hunan Province 410013, China
| | - Yang Yang
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.,China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
4
|
Ince D, Lucas TM, Malaker SA. Current strategies for characterization of mucin-domain glycoproteins. Curr Opin Chem Biol 2022; 69:102174. [PMID: 35752002 DOI: 10.1016/j.cbpa.2022.102174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.
Collapse
Affiliation(s)
- Deniz Ince
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Taryn M Lucas
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States.
| |
Collapse
|
5
|
Lucas TM, Gupta C, Altman MO, Sanchez E, Naticchia MR, Gagneux P, Singharoy A, Godula K. Mucin-mimetic glycan arrays integrating machine learning for analyzing receptor pattern recognition by influenza A viruses. Chem 2021; 7:3393-3411. [PMID: 34993358 PMCID: PMC8726012 DOI: 10.1016/j.chempr.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.
Collapse
Affiliation(s)
- Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Meghan O. Altman
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Emi Sanchez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pascal Gagneux
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
6
|
Glycocalyx crowding with mucin mimetics strengthens binding of soluble and virus-associated lectins to host cell glycan receptors. Proc Natl Acad Sci U S A 2021; 118:2107896118. [PMID: 34583992 DOI: 10.1073/pnas.2107896118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-associated mucins protect epithelial cell surfaces against pathogenic threats by serving as nonproductive decoys that capture infectious agents and clear them from the cell surface and by erecting a physical barrier that restricts their access to target receptors on host cells. However, the mechanisms through which mucins function are still poorly defined because of a limited repertoire of tools available for tailoring their structure and composition in living cells with molecular precision. Using synthetic glycopolymer mimetics of mucins, we modeled the mucosal glycocalyx on red blood cells (RBCs) and evaluated its influence on lectin (SNA) and virus (H1N1) adhesion to endogenous sialic acid receptors. The glycocalyx inhibited the rate of SNA and H1N1 adhesion in a size- and density-dependent manner, consistent with the current view of mucins as providing a protective shield against pathogens. Counterintuitively, increasing the density of the mucin mimetics enhanced the retention of bound lectins and viruses. Careful characterization of SNA behavior at the RBC surface using a range of biophysical and imaging techniques revealed lectin-induced crowding and reorganization of the glycocalyx with concomitant enhancement in lectin clustering, presumably through the formation of a more extensive glycan receptor patch at the cell membrane. Our findings indicate that glycan-targeting pathogens may exploit the biophysical and biomechanical properties of mucins to overcome the mucosal glycocalyx barrier.
Collapse
|
7
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub‐Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted‐To/Grafted‐From Photopolymerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yerzhan S. Zholdassov
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Joanna Korpanty
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - David R. Mootoo
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Nathan C. Gianneschi
- Department of Chemistry Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Adam B. Braunschweig
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD program in Biochemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
8
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub-Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted-To/Grafted-From Photopolymerizations. Angew Chem Int Ed Engl 2021; 60:20350-20357. [PMID: 34273126 DOI: 10.1002/anie.202105729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Indexed: 11/09/2022]
Abstract
We report a novel glycan array architecture that binds the mannose-specific glycan binding protein, concanavalin A (ConA), with sub-femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted-from thiol-(meth)acrylate polymerization with thiol-ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted-to/grafted-from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.
Collapse
Affiliation(s)
- Daniel J Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yerzhan S Zholdassov
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - David R Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam B Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA.,The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| |
Collapse
|
9
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
10
|
Yamauchi N, Yatabe R, Iino H, Nagatsuka M, Sogame Y, Ogata M, Kobayashi Y. Spontaneous immobilization of both a fluorescent dye and a functional sugar during the fabrication of submicron-sized PMMA particles in an aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Yamauchi N, Iino H, Obinata S, Ogata M, Yatabe R, Kobayashi Y, Kurumada K. One-pot formation of sugar-immobilized monodisperse polymethylmethacrylate particles by soap-free emulsion polymerization. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Shen KM, Sabbavarapu NM, Fu CY, Jan JT, Wang JR, Hung SC, Lee GB. An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR. LAB ON A CHIP 2019; 19:1277-1286. [PMID: 30839009 DOI: 10.1039/c8lc01369a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The influenza A (InfA) virus, which poses a significant global public health threat, is routinely classified into "subtypes" based on viral hemagglutinin (HA) and neuraminidase (NA) antigens. Because there are nearly 200 viral subtypes, current diagnostic approaches require multiplexing or array systems to cover various subtypes of HA and NA. A microfluidic chip featuring a HA × NA array was consequently developed herein for diagnosis and subtyping of InfA viruses via the use of glycan-coated magnetic beads followed by reverse transcription (RT) polymerase chain reaction (PCR). Up to 12 InfA subtypes were simultaneously detected in an automated fashion in less than 100 minutes on this microfluidic platform, representing a significant improvement in analysis speed compared to benchtop RT-PCR and chip-based microarray systems. The limits of detection of the RT-PCR assays ranged from 40 to 3000 copy numbers for the different subtypes of InfA viruses, around two orders of magnitude higher than in previous studies using microfluidic technologies. In summary, the array-type microfluidic chip system provides a rapid, sensitive, and fully automated approach for detection and multiple subtyping of InfA.
Collapse
Affiliation(s)
- Kao-Mai Shen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Huang ML, Purcell SC, Verespy S, Wang Y, Godula K. Glycocalyx scaffolding with synthetic nanoscale glycomaterials. Biomater Sci 2018; 5:1537-1540. [PMID: 28616946 DOI: 10.1039/c7bm00289k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a method for programming complexity into the glycocalyx of live cells. Via a combination of glycomaterial synthesis and membrane remodeling, we have engineered cells to display native-like, mixed sialoglycan populations, while confining the activity of each glycan into a specific nanoscale presentation.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA, USA.
| | - Sean C Purcell
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA, USA.
| | - Stephen Verespy
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA, USA.
| | - Yinan Wang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA, USA.
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA, USA.
| |
Collapse
|
15
|
Fu X, Zhang H, Zhang J, Wen ST, Deng XC. A Highly Sensitive and Label-Free Microbead-Based ‘Turn-On’ Colorimetric Sensor for the Detection of Mercury(II) in Urine Using a Peroxidase-Like Split G-Quadruplex–Hemin DNAzyme. Aust J Chem 2018. [DOI: 10.1071/ch18302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2%, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.
Collapse
|
16
|
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect 2016; 22:975-983. [DOI: 10.1016/j.cmi.2016.07.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|