1
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Lin L, Xu M, Zhang H. Assistance of metagenomics next-generation sequencing for diagnosis of adenovirus pericarditis with pericardial effusion in a child: a case report and literature review. Front Pediatr 2023; 11:1174326. [PMID: 37377762 PMCID: PMC10291042 DOI: 10.3389/fped.2023.1174326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Human adenoviruses (HAdVs) can cause infection at any age but are most common in the pediatric population, especially young children and infants, with a peak incidence in infants and children from 6 months to 5 years of age. Adenovirus infection can cause severe pneumonia, but pericarditis from adenovirus infection was rare. This article reports a case of a 2-year-old patient with pericarditis caused by adenovirus infection and a moderate pericardial effusion. We detected positive adenovirus nucleic acid in the patient's blood by polymerase chain reaction assay. In addition, HAdVs were identified by metagenomics next-generation sequencing (mNGS) in blood and pericardial effusion. According to the test results and clinical practice, active symptomatic and supportive treatment was given, and finally the child recovered and was discharged from the hospital. Comprehensive and accurate diagnosis of pathogens is a prerequisite for effective treatment, and mNGS provides an effective means for diagnosing rare adenovirus myocarditis in children.
Collapse
|
3
|
Gillot C, Favresse J, Maloteau V, Mathieux V, Dogné JM, Mullier F, Douxfils J. Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome. Vaccines (Basel) 2022; 10:vaccines10122056. [PMID: 36560466 PMCID: PMC9781243 DOI: 10.3390/vaccines10122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND in this report, we describe the case of an 83-year-old woman vaccinated with ChadOx1 nCoV-19 who developed a so-called vaccine-induced thrombosis with thrombocytopenia syndrome and who did not develop any antibodies against the spike protein of SARS-CoV-2 at 30 days following the administration of her first dose of ChadOx1 nCoV-19. Experimental section: two serum samples from the patient and 5 serum samples from 5 control individuals having received the two-dose regimen vaccination with ChadOx1 nCoV-19 were evaluated. In order to investigate the lack of response to the vaccination, a cell model was developed. This model permits to evaluate the interaction between responsive cells (A549) possessing the Coxsackievirus and Adenovirus Receptor (CAR), a defined concentration of ChadOx1 nCoV-19 and serial dilution of the patient or the control serum. The aim was to assess the impact of these sera on the production of the spike (S) protein induced by the transfection of the genetic material of ChadOx1 nCoV-19 into the A549 cells. The S protein is measured in the supernatant using an ELISA technique. RESULTS interestingly, the serum from the patient who developed the vaccine-induced thrombosis with thrombocytopenia syndrome impaired the production of S protein by the A549 cells transfected with ChadOx1 nCoV-19. This was not observed with the controls who did not interfere with the transfection of ChadOx1 nCoV-19 into A549 cells since the S protein is retrieved in the supernatant fraction. CONCLUSION based on the data coming from the clinical and the cell model information, we found a possible explanation on the absence of antibody response in our patient. She has, or has developed, characteristics that prevent the production of the S protein in contrast to control subjects. We were not able to investigate the entire mechanism behind this resistance which deserve further investigations. A link between this resistance and the development of the thrombosis with thrombocytopenia syndrome following vaccination with ChadOx1 nCoV-19 cannot be excluded.
Collapse
Affiliation(s)
- Constant Gillot
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - Julien Favresse
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Department of Laboratory Medicine, Clinique St-Luc Bouge, B-5000 Namur, Belgium
| | - Vincent Maloteau
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - Valérie Mathieux
- Service d’Hématologie, CHU UCL NAMUR-Site Sainte Elisabeth, Namur Thrombosis and Hemostasis Center, B-5000 Namur, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - François Mullier
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Université Catholique de Louvain, CHU UCL NAMUR, Department of Laboratory Medicine, B-5300 Yvoir, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Qualiblood sa, Research and Development Department, B-5000 Namur, Belgium
- Correspondence: ; Tel.: +32-81-72-43-91
| |
Collapse
|
4
|
Excoffon KJDA, Avila CL, Alghamri MS, Kolawole AO. The magic of MAGI-1: A scaffolding protein with multi signalosomes and functional plasticity. Biol Cell 2022; 114:185-198. [PMID: 35389514 DOI: 10.1111/boc.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
MAGI-1 is a critical cellular scaffolding protein with over 110 different cellular and microbial protein interactors. Since the discovery of MAGI-1 in 1997, MAGI-1 has been implicated in diverse cellular functions such as polarity, cell-cell communication, neurological processes, kidney function, and a host of diseases including cancer and microbial infection. Additionally, MAGI-1 has undergone nomenclature changes in response to the discovery of an additional PDZ domain, leading to lack of continuity in the literature. We address the nomenclature of MAGI-1 as well as summarize many of the critical functions of the known interactions. Given the importance of many of the interactors, such as human papillomavirus E6, the Coxsackievirus and adenovirus receptor (CAR), and PTEN, the enhancement or disruption of MAGI-based interactions has the potential to affect cellular functions that can potentially be harnessed as a therapeutic strategy for a variety of diseases.
Collapse
Affiliation(s)
| | - Christina L Avila
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Mahmoud S Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Abimbola O Kolawole
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
5
|
Kotha Lakshmi Narayan P, Readler JM, Alghamri MS, Brockman TL, Yan R, Sharma P, Snitsarev V, Excoffon KJDA, Kolawole AO. The Coxsackievirus and Adenovirus Receptor Has a Short Half-Life in Epithelial Cells. Pathogens 2022; 11:173. [PMID: 35215116 PMCID: PMC8880067 DOI: 10.3390/pathogens11020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell adhesion, cell signaling, and viral infection. The 8-exon encoded isoform (CAREx8) resides at the apical surface of polarized epithelia, where it is accessible as a receptor for adenovirus entering the airway lumen. Given its pivotal role in viral infection, it is a target for antiviral strategies. To understand the regulation of CAREx8 and determine the feasibility of receptor downregulation, the half-life of total and apical localized CAREx8 was determined and correlated with adenovirus transduction. Total and apical CAREx8 has a relatively short half-life of approximately 2 h. The half-life of apical CAREx8 correlates well with adenovirus transduction. These results suggest that antiviral strategies that aim to degrade the primary receptor for apical adenovirus infection will be effective within a relatively short time frame after application.
Collapse
Affiliation(s)
- Poornima Kotha Lakshmi Narayan
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Trisha L. Brockman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | | | - Katherine J. D. A. Excoffon
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Abimbola O. Kolawole
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
6
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
7
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
8
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
9
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
10
|
Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current and Future Perspectives. Cancers (Basel) 2020; 12:cancers12030619. [PMID: 32155969 PMCID: PMC7139921 DOI: 10.3390/cancers12030619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenoviruses (OAd) selectively target and lyse tumor cells and enhance anti- tumor immune responses. OAds have been used as promising cancer gene therapies for many years and there are a multitude of encouraging pre-clinical studies. However, translating OAd therapies to the clinic has had limited success, in part due to the lack of realistic pre-clinical models to rigorously test the efficacy of OAds. Solid tumors have a heterogenous and hostile microenvironment that provides many barriers to OAd treatment, including structural and immunosuppressive components that cannot be modeled in two-dimensional tissue culture. To replicate these characteristics and bridge the gap between pre-clinical and clinical success, studies must test OAd therapy in three-dimensional culture and animal models. This review focuses on current methods to test OAd efficacy in vitro and in vivo and the development of new model systems to test both oncolysis and immune stimulatory components of oncolytic adenovirotherapy.
Collapse
|
11
|
Readler JM, AlKahlout AS, Sharma P, Excoffon KJDA. Isoform specific editing of the coxsackievirus and adenovirus receptor. Virology 2019; 536:20-26. [PMID: 31394408 PMCID: PMC6733617 DOI: 10.1016/j.virol.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
The Coxsackievirus and adenovirus receptor (CAR) is both a viral receptor and cell adhesion protein. CAR has two transmembrane isoforms that localize distinctly in polarized epithelial cells. Whereas the seven exon-encoded isoform (CAREx7) exhibits basolateral localization, the eight exon-encoded isoform (CAREx8) can localize to the apical epithelial surface where it can mediate luminal adenovirus infection. To further understand the distinct biological functions of these two isoforms, CRISPR/Cas9 genomic editing was used to specifically delete the eighth exon of the CXADR gene in a Madine Darby Canine Kidney (MDCK) cell line with a stably integrated lentiviral doxycycline-inducible CAREx8 cDNA. The gene-edited clone demonstrated a significant reduction in adenovirus susceptibility when both partially and fully polarized, and doxycycline-induction of CAREx8 restored sensitivity to adenovirus. These data reinforce the importance of CAREx8 in apical adenovirus infection and provide a new model cell line to probe isoform specific biological functions of CAR.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Base Sequence
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Dogs
- Doxycycline/pharmacology
- Exons
- Gene Editing/methods
- Gene Expression Regulation, Viral
- Humans
- Madin Darby Canine Kidney Cells
- Promoter Regions, Genetic/drug effects
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- James M Readler
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Amal S AlKahlout
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Katherine J D A Excoffon
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA; Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
12
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|