Development of a skin- and neuro-attenuated live vaccine for varicella.
Nat Commun 2022;
13:824. [PMID:
35149692 PMCID:
PMC8837607 DOI:
10.1038/s41467-022-28329-1]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Varicella caused by the primary infection of varicella-zoster virus (VZV) exerts a considerable disease burden globally. Current varicella vaccines consisting of the live-attenuated vOka strain of VZV are generally safe and effective. However, vOka retains full neurovirulence and can establish latency and reactivate to cause herpes zoster in vaccine recipients, raising safety concerns. Here, we rationally design a live-attenuated varicella vaccine candidate, v7D. This virus replicates like wild-type virus in MRC-5 fibroblasts and human PBMCs, the carrier for VZV dissemination, but is severely impaired for infection of human skin and neuronal cells. Meanwhile, v7D shows immunogenicity comparable to vOka both in vitro and in multiple small animal species. Finally, v7D is proven well-tolerated and immunogenic in nonhuman primates. Our preclinical data suggest that v7D is a promising candidate as a safer live varicella vaccine with reduced risk of vaccine-related complications, and could inform the design of other herpes virus vaccines.
Current varicella vaccines retain neurovirulence and can establish latency and reactivate. Here, the authors present preclinical results of a rationally-designed, skin- and neuro-attenuated varicella vaccine candidate, v7D, showing its attenuation in human skin and neuronal cells and its immunogenicity in small animal models and nonhuman primates
Collapse