1
|
Mora-Bitria L, Asquith B. Germline natural killer cell receptors modulating the T cell response. Front Immunol 2024; 15:1477991. [PMID: 39559364 PMCID: PMC11570266 DOI: 10.3389/fimmu.2024.1477991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
In addition to their central role during innate responses, NK cells regulate adaptive immunity through various mechanisms. A wide array of innate receptors has been involved in the NK cell regulatory function. However, the clinical implications of these regulatory pathways are poorly understood. Here, we review the experimental evidence on the effects of NK cells on T cells and their positive and negative consequences for disease outcome during T cell responses in humans.
Collapse
Affiliation(s)
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College
London, London, United Kingdom
| |
Collapse
|
2
|
Chen Y, Huang Y, Huang R, Chen Z, Wang X, Chen F, Huang Y. Interleukin-10 gene intervention ameliorates liver fibrosis by enhancing the immune function of natural killer cells in liver tissue. Int Immunopharmacol 2024; 127:111341. [PMID: 38081103 DOI: 10.1016/j.intimp.2023.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS Interleukin 10 (IL-10) and natural killer (NK) cells have the potential to combat liver fibrosis. However, whether NK cells play an important role in the anti-fibrotic effects of IL-10 is not sufficiently elucidated. In this study, we investigated the regulatory effects of IL-10 on NK cells during liver fibrosis. METHODS Fibrotic mice induced with carbon tetrachloride were treated with or without IL-10 in the presence or absence of NK cells. Liver damage and fibrosis were assessed using hematoxylin and eosin and Sirius Red staining and serum transaminase and liver hydroxyproline assays, respectively. NK cell distribution, quantity, activation, cytotoxicity, development, and origin were analyzed using immunohistochemistry, immunofluorescence, and flow cytometry. Enzyme-linked immunosorbent assay was used to determine chemokine levels. RESULTS In the presence of NK cells, IL-10 gene intervention improved liver fibrosis and enhanced NK cell accumulation and function in the liver, as evidenced by increased NKG2D, interferon-γ, and CD107a expression. Furthermore, IL-10 promoted the migration of circulating NK cells to the fibrotic liver and elevated C-C motif ligand 5 levels. However, depletion of NK cells exacerbated liver fibrosis and impaired the anti-fibrotic effect of IL-10. CONCLUSIONS The anti-fibrotic effect of IL-10 relies on the enhancement of NK cell immune function, including activation, cytotoxicity, development, and migration. These results provide valuable insights into the mechanisms through which IL-10 regulates NK cells to limit the progression of liver fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yixuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Rongfeng Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Fenglin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| |
Collapse
|
3
|
Zhao M, Wang C, Li P, Sun T, Wang J, Zhang S, Ma Q, Ma F, Shi W, Shi M, Ma Y, Pan Y, Zhang H, Xie X. Single-cell RNA sequencing reveals the transcriptomic characteristics of peripheral blood mononuclear cells in hepatitis B vaccine non-responders. Front Immunol 2023; 14:1091237. [PMID: 37593735 PMCID: PMC10431960 DOI: 10.3389/fimmu.2023.1091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of a vaccine against hepatitis B has proven to be an important milestone in the prevention of this disease; however, 5%-10% of vaccinated individuals do not generate an immune response to the vaccine, and its molecular mechanism has not been clarified. In this study, single-cell RNA sequencing was performed on peripheral blood mononuclear cells (PBMCs) from three volunteers with a high immune response (HR) and three with no immune response (NR) to the hepatitis B vaccine. We found that the antigen-presenting activity scores of various antigen-presenting cells, the mitogen-activated protein kinase (MAPK) pathway activity scores of naive B cells, and the cell activity scores of three types of effector T cells were significantly decreased, whereas the cytotoxicity scores of CD3highCD16lowKLRG1high natural killer T (NKT) cells were significantly increased in the NR group compared with those in the HR group. Additionally, the expression levels of some classical molecules associated with distinct signaling pathways-including HLA-B, HLA-DRB5, BLNK, BLK, IL4R, SCIMP, JUN, CEBPB, NDFIP1, and TXNIP-were significantly reduced in corresponding subsets of PBMCs from the NR group relative to those of the HR group. Furthermore, the expression of several cytotoxicity-related effector molecules, such as GNLY, NKG7, GZMB, GZMM, KLRC1, KLRD1, PRF1, CST7, and CTSW, was significantly higher in CD3highCD16lowKLRG1high NKT cells derived from non-responders. Our study provides a molecular basis for the lack of response to the hepatitis B vaccine, including defective antigen presentation, decreased T cell activity, and reduced IL-4 secretion, as well as novel insight into the role of NKT cells in the immune response to the hepatitis B vaccine.
Collapse
Affiliation(s)
- Meie Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Chunxia Wang
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Sun
- Clinical Laboratory, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yapeng Ma
- Department of Laboratory Medicine, The First People’s Hospital of Tianshui, Tian Shui, Gansu, China
| | - Yunyan Pan
- Department of Laboratory Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Zhang
- Virus Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
6
|
Ali A, Canaday LM, Feldman HA, Cevik H, Moran MT, Rajaram S, Lakes N, Tuazon JA, Seelamneni H, Krishnamurthy D, Blass E, Barouch DH, Waggoner SN. Natural killer cell immunosuppressive function requires CXCR3-dependent redistribution within lymphoid tissues. J Clin Invest 2021; 131:146686. [PMID: 34314390 PMCID: PMC8439606 DOI: 10.1172/jci146686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/22/2021] [Indexed: 02/01/2023] Open
Abstract
NK cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4+ T cells during the first 3 days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state. Here, we showed that NK cell suppression of T cells is associated with transient accumulation of NK cells within T cell-rich sites of the spleen during lymphocytic choriomeningitis virus infection. The chemokine receptor CXCR3 was required for this relocation and suppression of antiviral T cells. Accordingly, NK cell migration was mediated by type I IFN-dependent promotion of CXCR3 ligand expression. In contrast, adenoviral vectors that weakly induced type I IFN and did not stimulate NK cell inhibition of T cells also did not promote measurable redistribution of NK cells to T cell zones. Exogenous IFN rescued NK cell migration during adenoviral vector immunization. Thus, type I IFN and CXCR3 were critical for properly positioning NK cells to constrain antiviral T cell responses. Development of strategies to curtail migration of NK cells between lymphoid compartments may enhance vaccine-elicited immune responses.
Collapse
Affiliation(s)
- Ayad Ali
- Medical Scientist Training Program and
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura M. Canaday
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Alex Feldman
- Medical Scientist Training Program and
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program and
| | - Michael T. Moran
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sanjeeth Rajaram
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Sciences Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nora Lakes
- Medical Scientist Training Program and
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jasmine A. Tuazon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Stephen N. Waggoner
- Medical Scientist Training Program and
- Immunology Graduate Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci 2021; 42:789-801. [PMID: 34311992 PMCID: PMC8364504 DOI: 10.1016/j.tips.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Vaccination serves as a cornerstone of global health. Successful prevention of infection or disease by vaccines is achieved through elicitation of pathogen-specific antibodies and long-lived memory T cells. However, several microbial threats to human health have proven refractory to past vaccine efforts. These shortcomings have been attributed to either inefficient triggering of memory T and B cell responses or to the unfulfilled need to stimulate non-conventional forms of immunological memory. Natural killer (NK) cells have recently emerged as both key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. We discuss potential methods to modulate these functions of NK cells to enhance vaccine success.
Collapse
Affiliation(s)
- Andrew Cox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura M Canaday
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nora Lakes
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
9
|
Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol 2020; 109:185-194. [PMID: 33095941 DOI: 10.1002/jlb.3mr0820-685r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.
Collapse
Affiliation(s)
- Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
11
|
Nath PR, Gangaplara A, Pal-Nath D, Mandal A, Maric D, Sipes JM, Cam M, Shevach EM, Roberts DD. CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus. Front Immunol 2018; 9:2985. [PMID: 30643501 PMCID: PMC6320676 DOI: 10.3389/fimmu.2018.02985] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
CD47 is a ubiquitous cell surface receptor that directly regulates T cell immunity by interacting with its inhibitory ligand thrombospondin-1 and limits clearance of cells by phagocytes that express its counter-receptor signal-regulatory protein-α. Murine natural killer (NK) cells express higher levels of CD47 than other lymphocytes, but the role of CD47 in regulating NK cell homeostasis and immune function remains unclear. Cd47 -/- mice exhibited depletion of NK precursors in bone marrow, consistent with the antiphagocytic function of CD47. In contrast, antisense CD47 knockdown or gene disruption resulted in a dose dependent accumulation of immature and mature NK cells in spleen. Mature Cd47 -/- NK cells exhibited increased expression of NK effector and interferon gene signatures and an increased proliferative response to interleukin-15 in vitro. Cd47 -/- mice showed no defect in their early response to acute Armstrong lymphocytic choriomeningitis virus (LCMV) infection but were moderately impaired in controlling chronic Clone-13 LCMV infection, which was associated with depletion of splenic NK cells and loss of effector cytokine and interferon response gene expression in Cd47 -/- NK cells. Broad CD47-dependent differences in NK activation, survival, and exhaustion pathways were observed in NK cell transcriptional signatures in LCMV infected mice. These data identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell function in responding to a viral infection.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ajeet Mandal
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - John M Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|