1
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Yuan N, Song Q, Jin Y, Zhang Z, Wu Z, Sheng X, Qi X, Xing K, Xiao L, Wang X. Replication of standard bovine viral diarrhea strain OregonC24Va induces endoplasmic reticulum stress-mediated apoptosis of bovine trophoblast cells. Cell Stress Chaperones 2023; 28:49-60. [PMID: 36441379 PMCID: PMC9877273 DOI: 10.1007/s12192-022-01300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bovine viral diarrhea (BVD) is a worldwide infectious disease caused by bovine viral diarrhea virus (BVDV) infection, which invades the placenta, causes abortion, produces immune tolerance and continuously infects calves, and causes huge economic losses to the cattle industry. The endoplasmic reticulum (ER) is an important organelle in cells, which is prone to ER stress after being stimulated by pathogens, thus activating the ER stress-related apoptosis. Studies have confirmed that BVDV can utilize the ER of its host to complete its own proliferation and stimulate ER stress to a certain extent. However, the role of ER stress in BVDV infecting bovine placental trophoblast cells (BTCs) and inducing apoptosis is still unclear. We are using the cytopathic strain of BVDV (OregonC24Va), which can cause apoptosis of BTCs, as a model system to determine how ER stress induced by BVDV affects placental toxicity. We show that OregonC24Va can infect BTCs and proliferate in it. With the proliferation of BVDV in BTCs, ER stress-related apoptosis is triggered. The ER stress inhibitor 4-PBA was used to inhibit the ER stress of BTCs, which not only inhibited the proliferation of BVDV, but also reduced the apoptosis of BTCs. The ER stress activator Tg can activate ER stress-related apoptosis, but the proliferation of BVDV does not change in BTCs. Therefore, BVDV utilizes the UPR of activated ER stress to promote the proliferation of BVDV in the early stage of infection, and activates the ER stress-related apoptosis of BTCs in the later stage with the virus proliferation to promote the cell apoptosis and further spread of the virus. Our research provides a new theoretical basis for exploring the placental infection and vertical transmission of BVDV.
Collapse
Affiliation(s)
- Naihan Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Quanjiang Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Lin'an District, 666 Wusu StreetZhejiang Province, Hangzhou, 311300, China
| | - Yan Jin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhenhao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zheng Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
3
|
Chen L, Ni M, Ahmed W, Xu Y, Bao X, Zhuang T, Feng L, Guo M. Pseudorabies virus infection induces endoplasmic reticulum stress and unfolded protein response in suspension-cultured BHK-21 cells. J Gen Virol 2022; 103. [PMID: 36748498 DOI: 10.1099/jgv.0.001818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral infections cause endoplasmic reticulum (ER) stress and subsequently unfolded protein response (UPR) which restores ER homeostasis. In this study, levels of proteins or transcription of three UPR pathways were examined in suspension-cultured BHK-21 cells to investigate Pseudorabies virus (PRV) infection-induced ER stress, in which glucose-related proteins 78 kD and 94 kD (GRP78 and GRP94) were upregulated. The downstream double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway was activated with upregulation of ATF4, CHOP, and GADD34, and the inositol requiring kinase 1 (IRE1) pathway was triggered by the splicing of X box-binding protein 1 (XBP1) mRNA and the enhanced expression of p58IPK and EDEM. Furthermore, our results showed that the ER stress, induced by 0.005 µM thapsigargin, promoted PRV replication in suspension-cultured BHK-21 cells, and that PRV glycoprotein B (gB) overexpression triggered the PERK and IRE1 pathways.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Minshu Ni
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yue Xu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Tenghan Zhuang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
4
|
Wu Y, Zhang Z, Li Y, Li Y. The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Front Microbiol 2022; 12:814635. [PMID: 35222313 PMCID: PMC8874136 DOI: 10.3389/fmicb.2021.814635] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The integrated stress response (ISR) is an adaptational signaling pathway induced in response to different stimuli, such as accumulation of unfolded and misfolded proteins, hypoxia, amino acid deprivation, viral infection, and ultraviolet light. It has been known that viral infection can activate the ISR, but the role of the ISR during viral infection is still unclear. In some cases, the ISR is a protective mechanism of host cells against viral infection, while viruses may hijack the ISR for facilitating their replication. This review highlighted recent advances on the induction of the ISR upon viral infection and the downstream responses, such as autophagy, apoptosis, formation of stress granules, and innate immunity response. We then discussed the molecular mechanism of the ISR regulating viral replication and how viruses antagonize this cellular stress response resulting from the ISR.
Collapse
Affiliation(s)
- Yongshu Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- *Correspondence: Yanmin Li,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Weingartner M, Stücheli S, Jebbawi F, Gottstein B, Beldi G, Lundström-Stadelmann B, Wang J, Odermatt A. Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Negl Trop Dis 2022; 16:e0009192. [PMID: 35030165 PMCID: PMC8794265 DOI: 10.1371/journal.pntd.0009192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/27/2022] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | | | - Junhua Wang
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Neerukonda SN, Egan NA, Patria J, Assakhi I, Tavlarides-Hontz P, Modla S, Muñoz ER, Hudson MB, Parcells MS. A comparison of exosome purification methods using serum of Marek's disease virus (MDV)-vaccinated and -tumor-bearing chickens. Heliyon 2020; 6:e05669. [PMID: 33336096 PMCID: PMC7734234 DOI: 10.1016/j.heliyon.2020.e05669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Marek's disease (MD) is an alphaherpesvirus (Marek's disease virus, MDV)-induced pathology of chickens associated with paralysis, immunosuppression, neurological signs, and T-cell lymphomas. MD is controlled in poultry production via live attenuated vaccines. The purpose of the current study was to compare methods for precipitating exosomes from vaccinated and protected chicken sera (VEX) and tumor-bearing chicken sera (TEX) for biomarker analysis of vaccine-induced protection and MD lymphomas respectively. A standard polyethylene glycol (PEG, 8%) method was compared to a commercial reagent (total exosome isolation reagent, TEI) for exosome yield and RNA content. Although exosomes purified by PEG or TEI were comparable in size and morphology, TEI-reagent yielded 3-4-fold greater concentration. Relative expression of 8 out of 10 G. gallus- and MDV1-encoded miRNAs examined displayed significant difference depending upon the precipitation method used. Standard PEG yields comparable, albeit lower amounts of exosomes than the TEI-reagent and a distinctive miRNA composition.
Collapse
Affiliation(s)
| | - Nicholas A. Egan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joseph Patria
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Imane Assakhi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Shannon Modla
- Delaware Biotechnology Institute, Bioimaging Center, Newark, DE 19711, USA
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Corresponding author.
| |
Collapse
|
7
|
Cortesi M, Zamagni A, Pignatta S, Zanoni M, Arienti C, Rossi D, Collina S, Tesei A. Pan-Sigma Receptor Modulator RC-106 Induces Terminal Unfolded Protein Response In In Vitro Pancreatic Cancer Model. Int J Mol Sci 2020; 21:ijms21239012. [PMID: 33260926 PMCID: PMC7734580 DOI: 10.3390/ijms21239012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| |
Collapse
|
8
|
Wang S, Ma X, Wang H, He H. Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection. Viruses 2020; 12:v12090974. [PMID: 32887282 PMCID: PMC7552016 DOI: 10.3390/v12090974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes great economic losses in the cattle industry. Herpesvirus infection generally induces endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in infected cells. However, it is not clear whether ER stress and UPR can be induced by BoHV-1 infection. Here, we found that ER stress induced by BoHV-1 infection could activate all three UPR sensors (the activating transcription factor 6 (ATF6), the inositol-requiring enzyme 1 (IRE1), and the protein kinase RNA-like ER kinase (PERK)) in MDBK cells. During BoHV-1 infection, the ATF6 pathway of UPR did not affect viral replication. However, both knockdown and specific chemical inhibition of PERK attenuated the BoHV-1 proliferation, and chemical inhibition of PERK significantly reduced the viral replication at the post-entry step of the BoHV-1 life cycle. Furthermore, knockdown of IRE1 inhibits BoHV-1 replication, indicating that the IRE1 pathway may promote viral replication. Further study revealed that BoHV-1 replication was enhanced by IRE1 RNase activity inhibition at the stage of virus post-entry in MDBK cells. Furthermore, IRE1 kinase activity inhibition and RNase activity enhancement decrease BoHV1 replication via affecting the virus post-entry step. Our study revealed that BoHV-1 infection activated all three UPR signaling pathways in MDBK cells, and BoHV-1-induced PERK and IRE1 pathways may promote viral replication. This study provides a new perspective for the interactions of BoHV-1 and UPR, which is helpful to further elucidate the mechanism of BoHV-1 pathogenesis.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| |
Collapse
|
9
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
10
|
Neerukonda SN, Katneni UK, Bhandari N, Parcells MS. Transcriptional Analyses of Innate and Acquired Immune Patterning Elicited by Marek's Disease Virus Vaccine Strains: Turkey Herpesvirus (HVT), Marek's Disease Virus 2 (strain SB1), and Bivalent Vaccines (HVT/SB1 and HVT-LT/SB1). Avian Dis 2020; 63:670-680. [PMID: 31865682 DOI: 10.1637/aviandiseases-d-19-00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a complex pathology of chickens caused by MD virus (MDV) 1 and is observed as paralysis, immune suppression, neurologic signs, and the rapid formation of T-cell lymphomas. The incidence of MD in commercial broilers is largely controlled via vaccination, either in ovo or at hatch with live attenuated vaccines, i.e., turkey herpesvirus (HVT) or a bivalent combination of HVT with the MDV 2 strain (SB1). To further extend the protection conferred by bivalent HVT/SB-1, recombinant HVTs encoding transgenes of other avian viruses have similarly been used for in ovo administration. Despite decades of use, the specific mechanisms associated with vaccine-induced protection remain obscure. Additionally, the mechanistic basis for vaccine synergism conferred by bivalent HVT/SB-1, compared with HVT or SB-1 administered alone, is largely unknown. In the present study, we report on temporal changes in innate and acquired immune-patterning gene expression by using ex vivo splenocyte infection and in ovo vaccination models. We report that in the ex vivo splenocyte infection model, by 72 hr postinfection, vaccines induced IFN and IFN-stimulated gene expression, with lesser proinflammatory cytokine induction. For several genes (TLR3, IFN-γ, OASL, Mx1, NOS2A, and IL-1β), the effects on gene expression were additive for HVT, SB1, and HVT/SB1 infection. We observed similar patterns of induction in in ovo-vaccinated commercial broiler embryos and chicks with HVT/SB-1 or recombinant HVT-based bivalent combination (HVT-LT/SB-1). Furthermore, HVT/SB-1 or HVT-LT/SB-1 in ovo vaccination appeared to hasten immune maturation, with expression patterns suggesting accelerated migration of T and natural killer cells into the spleen. Finally, HVT/SB-1 vaccination resulted in a coordinated induction of IL-12p40 and downregulation of suppressors of cytokine signaling 1 and 3, indicative of classical macrophage 1 and T-helper 1 patterning.
Collapse
Affiliation(s)
| | - Upendra K Katneni
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - Nirajan Bhandari
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, .,Department of Biological Sciences, University of Delaware, Newark, DE 19716,
| |
Collapse
|
11
|
Gao P, Chai Y, Song J, Liu T, Chen P, Zhou L, Ge X, Guo X, Han J, Yang H. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathog 2019; 15:e1008169. [PMID: 31738790 PMCID: PMC6932825 DOI: 10.1371/journal.ppat.1008169] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/26/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) constitutes a critical component of host innate immunity against microbial infections. In this report, we show that porcine reproductive and respiratory syndrome virus (PRRSV) utilizes the UPR machinery for its own benefit. We provide evidence that the virus targets the UPR central regulator GRP78 for proteasomal degradation via a mechanism that requires viral glycoprotein GP2a, while both IRE1-XBP1s and PERK-eIF2α-ATF4 signaling branches of the UPR are turned on at early stage of infection. The activated effector XBP1s was found to enter the nucleus, but ATF4 was unexpectedly diverted to cytoplasmic viral replication complexes by means of nonstructural proteins nsp2/3 to promote viral RNA synthesis. RNAi knockdown of either ATF4 or XBP1s dramatically attenuated virus titers, while overexpression caused increases. These observations reveal attractive host targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) poses a major threat to the worldwide swine industry, but no effective vaccines or antiviral drugs are available. A better understanding of the pathogen-host interactions that support PRRSV replication is essential for understanding viral pathogenesis and the development of preventive measures. Here we report that PRRSV utilizes unconventional strategies to reprogram the unfolded protein response (UPR) of the host to its own advantage. The virus targets GRP78 for partial degradation to create a favorable environment for UPR induction and hijacks ATF4 into cytoplasmic replication complexes to promote viral RNA synthesis. The data also reveal potential targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Teng Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Peng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
- * E-mail:
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
13
|
Sun X, Lan J, Tong R, Zhang H, Sun S, Xiong A, Wang Z, Yang L. An integrative investigation on the efficacy of Plantaginis semen based on UPLC-QTOF-MS metabolomics approach in hyperlipidemic mice. Biomed Pharmacother 2019; 115:108907. [PMID: 31071507 DOI: 10.1016/j.biopha.2019.108907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Plantaginis semen, the dried mature seed of Plantago asiatica L. or Plantago deprdssa Willd., has a prominent effect on the treatment of obesity, type 2 diabetes and lipid disorders, however, its clinical application is limited due to inadequate in-depth mechanism exploration and incomplete discussion of action targets of its in vivo. Therefore, an untargeted metabolomics approach was firstly applied to study the serum metabolic differences in mice. Metabolomics analysis was performed using ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) together with multivariate statistical data analysis. The results showed that Plantaginis semen can mainly improve blood lipids, some degree in blood glucose and insulin levels in high-fat mice, in addition, the phenotype of liver and fat stained sections demonstrated remarkable results. A total of 22 metabolites involved in arachidonic acid, glycerophospholipid, glycosphingolipid, linoleate, Omega-3 fatty acid, phosphatidylinositol phosphate and tyrosine metabolisms were identified. In further, it was found that the possible mechanisms of Plantaginis semen on hyperlipidemic mice lied in the biosynthesis of thyroxine, biological effects of enzymes of phospholipase A2 activity, glucosylceramide synthase and inositol essential enzyme 1α, genes expressions of fatty acid metabolism and inflammation. Serum metabolomics revealed that Plantaginis semen could cure the organism disease via regulating multiple metabolic pathways which will be helpful for understanding the mechanism of this herb and providing references for better applications of it in clinic, even researches on other TCMs.
Collapse
Affiliation(s)
- Xiaomeng Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiping Lan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Renchao Tong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haoyue Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuai Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
15
|
Zhao D, Yang J, Han K, Liu Q, Wang H, Liu Y, Huang X, Zhang L, Li Y. The unfolded protein response induced by Tembusu virus infection. BMC Vet Res 2019; 15:34. [PMID: 30670030 PMCID: PMC6343269 DOI: 10.1186/s12917-019-1781-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background Tembusu virus (TMUV), classified in the genus Flavivirus, causes reduced egg production and neurological problems in poultry. Flavivirus replication depends on the host endoplasmic reticulum (ER) and induces ER stress that leads to activation of the cellular unfolded protein response (UPR), an important signalling pathway that regulates many biological functions involved in viral pathogenesis and innate immunity. However, the mechanism of TMUV-induced UPR activation remains unclear. Results In this study, we systematically investigated the three UPR pathways in TMUV-infected BHK-21 cells. Our results showed that expression of glucose-related protein 78 (GRP78) and GRP94 was upregulated during the course of TMUV infection. We then demonstrated that TMUV activated the PERK pathway in the early stage of infection, resulting in upregulation of ATF4, GADD34 and CHOP, with CHOP induction leading to caspase-3 activation. We also found the IRE1 pathway to be activated, leading to splicing of X box binding protein 1 (XBP1) mRNA and enhanced expression of p58IPK. Finally, we observed increased expression of ATF6 and activity of ER stress-response elements, suggesting stimulation of the ATF6 pathway. In addition, ATF6 pathway activation correlated with the induction of downstream chaperones calnexin, calreticulin, ERp57 and PDI. UPR activity was also observed by the marked elevation in GRP78 and sXBP1 levels in TMUV-infected DF-1 cells. Conclusions This is the first report that TMUV infection-induced ER stress activates three branches of the UPR, and these results lay the foundation for elucidating the pathogenesis of TMUV and understanding the inherent mechanism of TMUV infection as well as the host response.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Huili Wang
- Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, People's Republic of China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Nath Neerukonda S, Egan NA, Patria J, Assakhi I, Tavlarides-Hontz P, Modla S, Muñoz ER, Hudson MB, Parcells MS. Comparison of exosomes purified via ultracentrifugation (UC) and Total Exosome Isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods 2019; 263:1-9. [DOI: 10.1016/j.jviromet.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
|
17
|
The Applications of Promoter-gene-Engineered Biosensors. SENSORS 2018; 18:s18092823. [PMID: 30150540 PMCID: PMC6164924 DOI: 10.3390/s18092823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
A promoter is a small region of a DNA sequence that responds to various transcription factors, which initiates a particular gene expression. The promoter-engineered biosensor can activate or repress gene expression through a transcription factor recognizing specific molecules, such as polyamine, sugars, lactams, amino acids, organic acids, or a redox molecule; however, there are few reported applications of promoter-enhanced biosensors. This review paper highlights the strategies of construction of promoter gene-engineered biosensors with human and bacteria genetic promoter arrays with regard to high-throughput screening (HTS) molecular drugs, the study of the membrane protein’s localization and nucleocytoplasmic shuttling mechanism of regulating factors, enzyme activity, detection of the toxicity of intermediate chemicals, and probing bacteria density to improve value-added product titer. These biosensors’ sensitivity and specificity can be further improved by the proposed approaches of Mn2+ and Mg2+ added random error-prone PCR that is a technique used to generate randomized genomic libraries and site-directed mutagenesis approach, which is applied for the construction of bacteria’s “mutant library”. This is expected to establish a flexible HTS platform (biosensor array) to large-scale screen transcription factor-acting drugs, reduce the toxicity of intermediate compounds, and construct a gene-dynamic regulatory system in “push and pull” mode, in order to effectively regulate the valuable medicinal product production. These proposed novel promoter-engineered biosensors aiding in synthetic genetic circuit construction will maximize the efficiency of the bio-synthesis of medicinal compounds, which will greatly promote the development of microbial metabolic engineering and biomedical science.
Collapse
|