1
|
Chuai X, Ye T, Zhao B, Wu Y, Guo C, Li F, Zhou J, Zhang K, Wang Y, Liu Y, Xie Y, Zhang J, Chiu S. Long-Lasting Protection and Dose Optimization of MPXV Polyvalent Mpox mRNA Vaccines Against Lethal Vaccinia Virus Challenge in Mice. J Med Virol 2025; 97:e70143. [PMID: 39726255 DOI: 10.1002/jmv.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R). These vaccines at a 20 µg dose could induce potential MPXV antigen-specific immune responses and provide protection against lethal VACV challenge. Compared with the individual bivalent mRNA vaccines, the two quadrivalent vaccines LBAAM and LBA& LAM displayed superior protective effects. To characterize these vaccines further, we monitored long-term immunity and protection as long as 28 weeks after initial immunization and optimized the immunization dosages to decrease the cost of production for future clinical use. Our results demonstrated that both the bivalent MPXV mRNA vaccine LAM (A35R-M1R) and the two tetravalent vaccines LBAAM and LBA& LAM could elicit long-lasting antigen-specific IgG antibodies as well as neutralizing antibodies against VACV and MPXV. They all provided complete protection against VACV challenge until 28 weeks post prime immunization. Moreover, the immunogenicity and protective efficacy of the two tetravalent vaccines (LBAAM and LBA& LAM) are dose dependent, and even the low-dose (1 µg) vaccine could provide sufficient protection against lethal VACV challenge. These results provide valuable clues for the further production of MPXV mRNA vaccines for use in humans.
Collapse
Affiliation(s)
- Xia Chuai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Tianxi Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoxin Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Chen Guo
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Fangxu Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Jinge Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yuping Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanhui Liu
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Yalin Xie
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
2
|
Mucker EM, Freyn AW, Bixler SL, Cizmeci D, Atyeo C, Earl PL, Natarajan H, Santos G, Frey TR, Levin RH, Meni A, Arunkumar GA, Stadlbauer D, Jorquera PA, Bennett H, Johnson JC, Hardcastle K, Americo JL, Cotter CA, Koehler JW, Davis CI, Shamblin JD, Ostrowski K, Raymond JL, Ricks KM, Carfi A, Yu WH, Sullivan NJ, Moss B, Alter G, Hooper JW. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell 2024; 187:5540-5553.e10. [PMID: 39236707 DOI: 10.1016/j.cell.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Sandra L Bixler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeff W Koehler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher I Davis
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Joshua D Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kristin Ostrowski
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jo Lynne Raymond
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Keersten M Ricks
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| |
Collapse
|
3
|
Mudhasani RR, Golden JW, Adam GC, Hartingh TJ, Kota KP, Ordonez D, Quackenbush CR, Tran JP, Cline C, Williams JA, Zeng X, Olsen DB, Lieberman LA, Boyce C, Ginnetti A, Meinig JM, Panchal RG, Mucker EM. Orally available nucleoside analog UMM-766 provides protection in a murine model of orthopox disease. Microbiol Spectr 2024; 12:e0358623. [PMID: 38391232 PMCID: PMC10986512 DOI: 10.1128/spectrum.03586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.
Collapse
Affiliation(s)
- Rajini R. Mudhasani
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Joseph W. Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Gregory C. Adam
- Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - Krishna P. Kota
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - David Ordonez
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Corey R. Quackenbush
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Julie P. Tran
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Curtis Cline
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Janice A. Williams
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Xiankun Zeng
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - David B. Olsen
- Infectious Diseases and Vaccines, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - Christopher Boyce
- Discovery Pharmaceutical Sciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - J. Matthew Meinig
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Rekha G. Panchal
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| |
Collapse
|
4
|
Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, Zhou DS, Fang M, Ying B, Deng YQ, Qin CF. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther 2024; 9:69. [PMID: 38531869 DOI: 10.1038/s41392-024-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Ru-Yi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Xing-Xing Suo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, 215123, Jiangsu, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
5
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
6
|
Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, Frey TR, Gall JG, Moliva JI, Hunegnaw R, Asthagiri Arunkumar G, Ogega CO, Nasir A, Santos G, Levin RH, Meni A, Jorquera PA, Bennett H, Johnson JA, Durney MA, Stewart-Jones G, Hooper JW, Colpitts TM, Alter G, Sullivan NJ, Carfi A, Moss B. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med 2023; 15:eadg3540. [PMID: 37792954 DOI: 10.1126/scitranslmed.adg3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.
Collapse
Affiliation(s)
| | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | - Jason G Gall
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Juan I Moliva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Ruth Hunegnaw
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702 MD, USA
| | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| |
Collapse
|
7
|
Davis I, Payne JM, Olguin VL, Sanders MP, Clements T, Stefan CP, Williams JA, Hooper JW, Huggins JW, Mucker EM, Ricks KM. Development of a specific MPXV antigen detection immunodiagnostic assay. Front Microbiol 2023; 14:1243523. [PMID: 37744911 PMCID: PMC10516133 DOI: 10.3389/fmicb.2023.1243523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Human monkeypox (mpox) has recently become a global public health emergency; however, assays that detect mpox infection are not widely available, largely due to cross-reactivity within the Orthopoxvirus genus. Immunoassay development was largely confined to researchers who focus on biothreats and endemic areas (Central and West Africa) until the 2022 outbreak. As was noted in the COVID-19 pandemic, antigen detection assays, integrated with molecular assays, are necessary to help curb the spread of disease. Antigen-detecting immunoassays offer the advantage of providing results ranging from within min to h and in lateral flow formats; they can be deployed for point-of-care, home, or field use. This study reports the development of an mpox-specific antigen detection immunoassay developed on a multiplexed, magnetic-bead-based platform utilizing reagents from all research sectors (commercial, academic, and governmental). Two semi-quantitative assays were developed in parallel and standardized with infectious mpox virus (MPXV) cell culture fluid and MPXV-positive non-human primate (NHP) sera samples. These assays could detect viral antigens in serum, were highly specific toward MPXV as compared to other infectious orthopoxviruses (vaccinia virus, cowpox virus, and camelpox virus), and exhibited a correlation with quantitative PCR results from an NHP study. Access to a toolbox of assays for mpox detection will be key for identifying cases and ensuring proper treatment, as MPXV is currently a global traveler.
Collapse
Affiliation(s)
- Ian Davis
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Jackie M. Payne
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Victoria L. Olguin
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Madison P. Sanders
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Tamara Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Christopher P. Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - John W. Huggins
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| |
Collapse
|
8
|
Hubert M, Guivel-Benhassine F, Bruel T, Porrot F, Planas D, Vanhomwegen J, Wiedemann A, Burrel S, Marot S, Palich R, Monsel G, Diombera H, Gallien S, Lopez-Zaragoza JL, Vindrios W, Taieb F, Fernandes-Pellerin S, Delhaye M, Laude H, Arowas L, Ungeheuer MN, Hocqueloux L, Pourcher V, Prazuck T, Marcelin AG, Lelièvre JD, Batéjat C, Lévy Y, Manuguerra JC, Schwartz O. Complement-dependent mpox-virus-neutralizing antibodies in infected and vaccinated individuals. Cell Host Microbe 2023; 31:937-948.e4. [PMID: 37196656 PMCID: PMC10188274 DOI: 10.1016/j.chom.2023.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
Mpox virus (MPXV) caused a multi-country outbreak in non-endemic areas in 2022. Following historic success of smallpox vaccination with vaccinia virus (VACV)-based vaccines, the third generation modified vaccinia Ankara (MVA)-based vaccine was used as prophylaxis for MPXV, but its effectiveness remains poorly characterized. Here, we applied two assays to quantify neutralizing antibodies (NAbs) in sera from control, MPXV-infected, or MVA-vaccinated individuals. Various levels of MVA NAbs were detected after infection, historic smallpox, or recent MVA vaccination. MPXV was minimally sensitive to neutralization. However, addition of complement enhanced detection of responsive individuals and NAb levels. Anti-MVA and -MPXV NAbs were observed in 94% and 82% of infected individuals, respectively, and 92% and 56% of MVA vaccinees, respectively. NAb titers were higher in individuals born before 1980, highlighting the impact of historic smallpox vaccination on humoral immunity. Altogether, our results indicate that MPXV neutralization is complement dependent and uncover mechanisms underlying vaccine effectiveness.
Collapse
Affiliation(s)
- Mathieu Hubert
- Institut Pasteur, Université Paris Cité, Virus and Immunity Unit, CNRS UMR3569, 75015 Paris, France.
| | | | - Timothée Bruel
- Institut Pasteur, Université Paris Cité, Virus and Immunity Unit, CNRS UMR3569, 75015 Paris, France; Vaccine Research Institute, 94000 Créteil, France
| | - Françoise Porrot
- Institut Pasteur, Université Paris Cité, Virus and Immunity Unit, CNRS UMR3569, 75015 Paris, France
| | - Delphine Planas
- Institut Pasteur, Université Paris Cité, Virus and Immunity Unit, CNRS UMR3569, 75015 Paris, France; Vaccine Research Institute, 94000 Créteil, France
| | - Jessica Vanhomwegen
- Institut Pasteur, Université Paris Cité, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 75015 Paris, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, INSERM U955, Team 16, 94000 Créteil, France
| | - Sonia Burrel
- Université de Bordeaux, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Hôpital Universitaire de Bordeaux, Service de Virologie, 33000 Bordeaux, France
| | - Stéphane Marot
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, 75013 Paris, France
| | - Romain Palich
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Maladies infectieuses et Tropicales, 75013 Paris, France
| | - Gentiane Monsel
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Maladies infectieuses et Tropicales, 75013 Paris, France
| | - Harouna Diombera
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, INSERM U955, Team 16, 94000 Créteil, France
| | - Sébastien Gallien
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, 94000 Créteil, France
| | - Jose Luis Lopez-Zaragoza
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, 94000 Créteil, France
| | - William Vindrios
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, 94000 Créteil, France
| | - Fabien Taieb
- Medical Center of Institut Pasteur, 75015 Paris, France
| | | | | | - Hélène Laude
- ICAReB-Clin platform, Institut Pasteur, 75015 Paris, France
| | | | | | | | - Valérie Pourcher
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Maladies infectieuses et Tropicales, 75013 Paris, France
| | - Thierry Prazuck
- CHR Orléans, Service de Maladies Infectieuses, 45100 Orléans, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, 75013 Paris, France
| | - Jean-Daniel Lelièvre
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, INSERM U955, Team 16, 94000 Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, 94000 Créteil, France
| | - Christophe Batéjat
- Institut Pasteur, Université Paris Cité, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 75015 Paris, France
| | - Yves Lévy
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, INSERM U955, Team 16, 94000 Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, 94000 Créteil, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Université Paris Cité, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 75015 Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université Paris Cité, Virus and Immunity Unit, CNRS UMR3569, 75015 Paris, France; Vaccine Research Institute, 94000 Créteil, France.
| |
Collapse
|
9
|
Shafaati M, Zandi M. Human monkeypox (hMPXV) re-emergence: Host immunity status and current vaccines landscape. J Med Virol 2023; 95:e28251. [PMID: 36271768 DOI: 10.1002/jmv.28251] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
Monkeypox virus is a member of the Orthopoxvirus genus and the Poxviridae family. Orthopoxviruses are among the most intricate animal viruses. The pathogenicity of human monkeypox infection has been emphasized in response to its recent emergence in non-endemic countries and the threat of bioterrorism. It is always necessary to take appropriate precautions in exposure to emerging or re-emerging infections. Here, we focus on the current state of the human monkeypox infection outbreak, research & development of immune responses, and clinical interventions to prevent and treat the human monkeypox virus and other human poxviruses.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty of Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
- Occupational Sleep Research, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses 2022; 14:v14092021. [PMID: 36146827 PMCID: PMC9505361 DOI: 10.3390/v14092021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever virus (ASFV), a nucleocytoplasmic large DNA virus (NCLDV), causes African swine fever (ASF), an acute hemorrhagic disease with mortality rates up to 100% in domestic pigs. ASF is currently epidemic or endemic in many countries and threatening the global swine industry. Extensive ASF vaccine research has been conducted since the 1920s. Like inactivated viruses of other NCLDVs, such as vaccinia virus, inactivated ASFV vaccine candidates did not induce protective immunity. However, inactivated lumpy skin disease virus (poxvirus) vaccines are protective in cattle. Unlike some experimental poxvirus subunit vaccines that induced protection, ASF subunit vaccine candidates implemented with various platforms containing several ASFV structural genes or proteins failed to protect pigs effectively. Only some live attenuated viruses (LAVs) are able to protect pigs with high degrees of efficacy. There are currently several LAV ASF vaccine candidates. Only one commercial LAV vaccine is approved for use in Vietnam. LAVs, as ASF vaccines, have not yet been widely tested. Reports thus far show that the onset and duration of protection induced by the LAVs are late and short, respectively, compared to LAV vaccines for other diseases. In this review, the biological challenges in the development of ASF vaccines, especially subunit platforms, are discussed from immunological perspectives based on several unusual ASFV characteristics shared with HIV and poxviruses. These characteristics, including multiple distinct infectious virions, extremely high glycosylation and low antigen surface density of envelope proteins, immune evasion, and possible apoptotic mimicry, could pose enormous challenges to the development of ASF vaccines, especially subunit platforms designed to induce humoral immunity.
Collapse
|
11
|
Mucker EM, Shamblin JD, Goff AJ, Bell TM, Reed C, Twenhafel NA, Chapman J, Mattix M, Alves D, Garry RF, Hensley LE. Evaluation of Virulence in Cynomolgus Macaques Using a Virus Preparation Enriched for the Extracellular Form of Monkeypox Virus. Viruses 2022; 14:v14091993. [PMID: 36146799 PMCID: PMC9505131 DOI: 10.3390/v14091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The 2022 global human monkeypox outbreak emphasizes the importance of maintaining poxvirus research, including enriching a basic understanding of animal models for developing and advancing therapeutics and vaccines. Intravenous administration of monkeypox virus in macaques is arguably one of the best animal models for evaluating the efficacy of medical countermeasures. Here we addressed one criticism of the model, a requirement for a high-titer administration of virus, as well as improving our understanding of monkeypox virus pathogenesis. To do so, we infected macaques with a challenge dose containing a characterized inoculum enriched for the extracellular form of monkeypox virus. Although there were some differences between diseases caused by the enriched preparation compared with a relatively similar unpurified preparation, we were unable to reduce the viral input with the enriched preparation and maintain severe disease. We found that inherent factors contained within the serum of nonhuman primate blood affect the stability of the monkeypox extracellular virions. As a first step to study a role of the extracellular form in transmission, we also showed the presence of this form in the oropharyngeal swabs from nonhuman primates exposed to monkeypox virus.
Collapse
Affiliation(s)
- Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
- Correspondence:
| | - Josh D. Shamblin
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Arthur J. Goff
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Todd M. Bell
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher Reed
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Jennifer Chapman
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Marc Mattix
- United States Army Medical Research Institute of Infectious Diseases, Pathology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Derron Alves
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Infectious Disease Pathogenesis Section, Rockville, MD 20852, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- United States Department of Agriculture, Zoonotic and Emerging Disease Unit, Manhattan, KS 66505, USA
| |
Collapse
|
12
|
Mucker EM, Shamblin JD, Raymond JL, Twenhafel NA, Garry RF, Hensley LE. Effect of Monkeypox Virus Preparation on the Lethality of the Intravenous Cynomolgus Macaque Model. Viruses 2022; 14:1741. [PMID: 36016363 PMCID: PMC9413320 DOI: 10.3390/v14081741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures.
Collapse
Affiliation(s)
- Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Josh D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- Zoonotic and Emerging Disease Unit, United States Department of Agriculture, Manhattan, KS 66505, USA
| |
Collapse
|
13
|
Protective Human Anti-Poxvirus Monoclonal Antibodies Are Generated from Rare Memory B Cells Isolated by Multicolor Antigen Tetramers. Vaccines (Basel) 2022; 10:vaccines10071084. [PMID: 35891248 PMCID: PMC9319751 DOI: 10.3390/vaccines10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Smallpox, an epidemic disease caused by Orthopoxvirus variola, was eradicated worldwide through immunization. The immunization against smallpox was discontinued in 1980. However, incidences of monkeypox virus infection in humans have occurred sporadically, and there is also great fear that engineered forms of poxvirus could be used as biological weapons. Therefore, monoclonal antibodies against poxvirus are urgently needed for the detection and treatment of poxvirus infection. The vaccinia virus’ extracellular envelope protein A33 is a potential candidate for a subunit vaccine. We used multi-fluorescence-labeled tetrameric A33 antigen to identify rare poxvirus-specific memory B cells from the PBMC of volunteers with vaccinia virus immunization more than 40 years ago. Despite extremely low frequencies of the poxvirus-specific memory B cells, we successfully sorted A33 tetramer-labeled single memory B cells and reconstructed the antibodies with the single-cell RT-PCR of the B-cell receptor. Among the monoclonal antibodies, one clone H2 exhibited high specificity and affinity with A33. H2 efficiently inhibited viral infection and spread in cells. Passive immunotherapy of H2 in mice protected mice from lethal infection when administered either prophylactically or therapeutically. These results suggest the potential of anti-A33 human-antibody-based detection and therapeutics for poxvirus infection.
Collapse
|
14
|
Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:847-858. [PMID: 35664703 PMCID: PMC9149018 DOI: 10.1016/j.omtn.2022.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/07/2022] [Indexed: 11/15/2022]
Abstract
Poxviruses are a large and complex family of viruses with members such as monkeypox virus and variola virus. The possibility of an outbreak of monkeypox virus (or a related poxvirus) or the misuse of variola virus justifies the development of countermeasures. Furthermore, poxviruses can be a useful surrogate for developing technology involving antibody therapies. In our experiments, we explored the feasibility of utilizing unmodified mRNA that encodes three previously described monoclonal antibodies, c8A, c6C, and c7D11, as countermeasures to smallpox in a relatively large (>3 kg) laboratory animal (rabbits). We confirmed in vitro translation, secretion, and biological activity of mRNA constructs and identified target monoclonal antibody levels from a murine vaccinia virus model that provided a clinical benefit. Individually, we were able to detect c7D11, c8A, and c6C in the serum of rabbits within 1 day of an intramuscular jet injection of lipid nanoparticle (LNP)-formulated mRNA. Injection of a combination of three LNP-formulated mRNA constructs encoding the three different antibodies produced near equivalent serum levels compared with each individual construct administered alone. These data are among the first demonstrating the feasibility of launching multiple antibodies using mRNA constructs in a large, nonrodent species. Based on empirically derived target serum level and the observed decay rate, the antibody levels attained were unlikely to provide protection.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| |
Collapse
|
15
|
Canter JA, Aponte T, Ramirez-Medina E, Pruitt S, Gladue DP, Borca MV, Zhu JJ. Serum Neutralizing and Enhancing Effects on African Swine Fever Virus Infectivity in Adherent Pig PBMC. Viruses 2022; 14:v14061249. [PMID: 35746720 PMCID: PMC9229155 DOI: 10.3390/v14061249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) causes hemorrhagic fever with mortality rates of up to 100% in domestic pigs. Currently, there are no commercial vaccines for the disease. Only some live-attenuated viruses have been able to protect pigs from ASFV infection. The immune mechanisms involved in the protection are unclear. Immune sera can neutralize ASFV but incompletely. The mechanisms involved are not fully understood. Currently, there is no standardized protocol for ASFV neutralization assays. In this study, a flow cytometry-based ASFV neutralization assay was developed and tested in pig adherent PBMC using a virulent ASFV containing a fluorescent protein gene as a substrate for neutralization. As with previous studies, the percentage of infected macrophages was approximately five time higher than that of infected monocytes, and nearly all infected cells displayed no staining with anti-CD16 antibodies. Sera from naïve pigs and pigs immunized with a live-attenuated ASFV and fully protected against parental virus were used in the assay. The sera displayed incomplete neutralization with MOI-dependent neutralizing efficacies. Extracellular, but not intracellular, virions suspended in naïve serum were more infectious than those in the culture medium, as reported for some enveloped viruses, suggesting a novel mechanism of ASFV infection in macrophages. Both the intracellular and extracellular virions could not be completely neutralized.
Collapse
Affiliation(s)
- Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Theresa Aponte
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth Ramirez-Medina
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Sarah Pruitt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Douglas P. Gladue
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - Manuel V. Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| |
Collapse
|
16
|
A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5 and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J Virol 2021; 96:e0150421. [PMID: 34851148 DOI: 10.1128/jvi.01504-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonosis. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV) induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, non-adjuvanted DNA vaccine delivered (i.m.) can protect against an aerosol exposure. Importance The eradication of smallpox and subsequent cessation of vaccination has left a majority of the population susceptible to variola virus or other emerging poxvirus. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced, and doesn't require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.
Collapse
|