1
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
2
|
Zhang H, Hu Q. TOM1 family conservation within the plant kingdom for tobacco mosaic virus accumulation. MOLECULAR PLANT PATHOLOGY 2023; 24:1385-1399. [PMID: 37443447 PMCID: PMC10576174 DOI: 10.1111/mpp.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A-TOM1-TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Zeng T, Liao P, Zheng C, Gao H, Ye X, Zhou C, Zhou Y. The interaction between the lemon ribosomal protein ClRPS9-2 and citrus yellow vein clearing virus coat protein affects viral infection and gene silencing suppressor activity. MOLECULAR PLANT PATHOLOGY 2023; 24:1047-1062. [PMID: 37148475 PMCID: PMC10423326 DOI: 10.1111/mpp.13347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
Citrus yellow vein clearing virus (CYVCV) is an emerging virus that causes serious economic damage to the lemon industry worldwide. The coat protein (CP) of CYVCV is a strong RNA silencing suppressor and is associated with the severity of symptoms in citrus, yet the interaction between CP and host factors remains unknown. In this study, the 40S ribosomal subunit protein S9-2 (ClRPS9-2) was identified as a CP-binding partner using the yeast two-hybrid system from a lemon (cv. Eureka) cDNA library, and the interaction between CP and ClRPS9-2 was demonstrated by in vivo methods. The results suggest that the N-terminal 8-108 amino acid sequence of ClRPS9-2 is crucial for its interaction with CP and may be associated with the nuclear localization of ClRPS9-2. The accumulation and silencing suppressor activity of CP were reduced by transient expression of ClRPS9-2 in Nicotiana benthamiana. Reverse transcription-quantitative PCR analysis showed that the content of CYVCV in ClRPS9-2 transgenic Eureka lemon plants was approximately 50% of that in CYVCV-infected wild-type plants 1 month after inoculation, and mild yellowing and vein clearing symptoms were observed in the transgenic plants. These findings demonstrate that ClRPS9-2 plays a role in host defensive reactions, and the enhanced resistance of transgenic plants to CYVCV may be associated with the up-regulation of salicylic acid-related and R genes.
Collapse
Affiliation(s)
- Ting Zeng
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Ping Liao
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Cairong Zheng
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Haixing Gao
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Xiao Ye
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Yan Zhou
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| |
Collapse
|
4
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
5
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ. Genome-Wide Identification of Rapid Alkalinization Factor Family in Brassica napus and Functional Analysis of BnRALF10 in Immunity to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:877404. [PMID: 35592581 PMCID: PMC9113046 DOI: 10.3389/fpls.2022.877404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Rapid alkalinization factors (RALFs) were recently reported to be important players in plant immunity. Nevertheless, the signaling underlying RALF-triggered immunity in crop species against necrotrophic pathogens remains largely unknown. In this study, RALF family in the important oil crop oilseed rape (Brassica napus) was identified and functions of BnRALF10 in immunity against the devastating necrotrophic pathogen Sclerotinia sclerotiorum as well as the signaling underlying this immunity were revealed. The oilseed rape genome carried 61 RALFs, half of them were atypical, containing a less conserved YISY motif and lacking a RRXL motif or a pair of cysteines. Family-wide gene expression analyses demonstrated that patterns of expression in response to S. sclerotiorum infection and DAMP and PAMP treatments were generally RALF- and stimulus-specific. Most significantly responsive BnRALF genes were expressionally up-regulated by S. sclerotiorum, while in contrast, more BnRALF genes were down-regulated by BnPep5 and SsNLP1. These results indicate that members of BnRALF family are likely differentially involved in plant immunity. Functional analyses revealed that BnRALF10 provoked diverse immune responses in oilseed rape and stimulated resistance to S. sclerotiorum. These data support BnRALF10 to function as a DAMP to play a positive role in plant immunity. BnRALF10 interacted with BnFER. Silencing of BnFER decreased BnRALF10-induced reactive oxygen species (ROS) production and compromised rape resistance to S. sclerotiorum. These results back BnFER to be a receptor of BnRALF10. Furthermore, quantitative proteomic analysis identified dozens of BnRALF10-elicited defense (RED) proteins, which respond to BnRALF10 in protein abundance and play a role in defense. Our results revealed that BnRALF10 modulated the abundance of RED proteins to fine tune plant immunity. Collectively, our results provided some insights into the functions of oilseed rape RALFs and the signaling underlying BnRALF-triggered immunity.
Collapse
Affiliation(s)
- Yu-Han He
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhuo-Ran Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Song-Yu Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
7
|
Chen Q, Wei T. Membrane and Nuclear Yeast Two-Hybrid Systems. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2400:93-104. [PMID: 34905194 DOI: 10.1007/978-1-0716-1835-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The yeast two-hybrid (Y2H) system is an effective means of detecting protein-protein interactions through the activation of reporter gene expression. This system has also displayed several useful applications, including rapidly revealing unexpected interactors of known proteins, detecting regions that take part in protein-protein interactions, and characterizing the orchestration of protein interactions in metabolic pathways. The Y2H system has been widely utilized in the study of plant virology to investigate interactions between viral proteins and host, vector, or viral proteins. This technology has been successful in enhancing the understanding of viral structure and assembly, replication, viral gene expression and regulation, viral movement, pathogenicity, and the network of viral proteins. Here, we provide the methods to uncover novel interactors of viral proteins via screening cDNA libraries of plant host and insect vectors, using nuclear and membrane Y2H systems, respectively.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
8
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
9
|
Hu Q, Zhang H, Zhang L, Liu Y, Huang C, Yuan C, Chen Z, Li K, Larkin RM, Chen J, Kuang H. Two TOBAMOVIRUS MULTIPLICATION 2A homologs in tobacco control asymptomatic response to tobacco mosaic virus. PLANT PHYSIOLOGY 2021; 187:2674-2690. [PMID: 34636879 PMCID: PMC8644204 DOI: 10.1093/plphys/kiab448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 05/28/2023]
Abstract
The most common response of a host to pathogens is arguably the asymptomatic response. However, the genetic and molecular mechanisms responsible for asymptomatic responses to pathogens are poorly understood. Here we report on the genetic cloning of two genes controlling the asymptomatic response to tobacco mosaic virus (TMV) in cultivated tobacco (Nicotiana tabacum). These two genes are homologous to tobamovirus multiplication 2A (TOM2A) from Arabidopsis, which was shown to be critical for the accumulation of TMV. Expression analysis indicates that the TOM2A genes might play fundamental roles in plant development or in responses to stresses. Consistent with this hypothesis, a null allele of the TOM2A ortholog in tomato (Solanum lycopersicum) led to the development of bent branches and a high tolerance to both TMV and tomato mosaic virus (ToMV). However, the TOM2A ortholog in Nicotiana glauca did not account for the asymptomatic response to TMV in N. glauca. We showed that TOM2A family is plant-specific and originated from Chlorophyte, and the biological functions of TOM2A orthologs to promote TMV accumulation are highly conserved in the plant kingdom-in both TMV host and nonhost species. In addition, we showed that the interaction between tobacco TOM1 and TOM2A orthologs in plant species is conserved, suggesting a conserved nature of TOM1-TOM2A module in promoting TMV multiplication in plants. The tradeoff between host development, the resistance of hosts to pathogens, and their influence on gene evolution are discussed. Our results shed light on mechanisms that contribute to asymptomatic responses to viruses in plants and provide approaches for developing TMV/ToMV-resistant crops.
Collapse
Affiliation(s)
- Qun Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Zefan Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunpeng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Yang G, Peng S, Wang T, Gao X, Li D, Li M, Chen S, Xu Z. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112945. [PMID: 34737155 DOI: 10.1016/j.ecoenv.2021.112945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.
Collapse
Affiliation(s)
- Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Tianyu Wang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Mengge Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Zhenggang Xu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
11
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|