1
|
Hu Z, Xia J, Wu J, Zhao H, Ji P, Gu L, Gu W, Chen Z, Xu J, Huang X, Ma J, Chen A, Li J, Shu T, Fan XY. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg Microbes Infect 2024; 13:2300463. [PMID: 38164736 PMCID: PMC10769537 DOI: 10.1080/22221751.2023.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jingxian Xia
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Huimin Zhao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ping Ji
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ling Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Wenfei Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | | | - Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | | | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Chen Z, Zhang Y, Wu J, Xu J, Hu Z, Fan XY. A multistage protein subunit vaccine as BCG-booster confers protection against Mycobacterium tuberculosis infection in murine models. Int Immunopharmacol 2024; 139:112811. [PMID: 39068754 DOI: 10.1016/j.intimp.2024.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The eradication of tuberculosis remains a global challenge. Despite being the only licensed vaccine, Bacillus Calmette-Guérin (BCG) confers limited protective efficacy in adults and individuals with latent tuberculosis infections (LTBI). There is an urgent need to develop novel vaccines that can enhance the protective effect of BCG. Protein subunit vaccines have garnered significant research interest due to their safety and plasticity. Based on previous studies, we selected three antigens associated with LTBI (Rv2028c, Rv2029c, Rv3126c) and fused them with an immunodominant antigen Ag85A, resulting in the construction of a multistage protein subunit vaccine named A986. We evaluated the protective effect of recombinant protein A986 adjuvanted with MPL/QS21 as a booster vaccine for BCG against Mycobacterium tuberculosis (Mtb) infection in mice. The A986 + MPL/QS21 induced the secretion of antigen-specific Th1 (IL-2+, IFN-γ+ and TNF-α+) and Th17 (IL-17A+) cytokines in CD4+ and CD8+ T cells within the lung and spleen of mice, while also increased the frequency of central memory and effector memory T cells. Additionally, it also induced the enhanced production of IgG antibodies. Compared to BCG alone, A986 + MPL/QS21 boosting significantly augmented the proliferation of antigen-specific multifunctional T cells and effectively reduced bacterial load in infected mice. Taken together, A986 + MPL/QS21 formulation induced robust antigen-specific immune responses and provided enhanced protection against Mtb infection as a booster of BCG vaccine.
Collapse
Affiliation(s)
- Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Ying Zhang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China.
| |
Collapse
|
3
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
4
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
5
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Kim Y, Park IH, Shin J, Choi J, Jeon C, Jeon S, Shin JS, Jung H. Sublingual Dissolving Microneedle (SLDMN)-Based Vaccine for Inducing Mucosal Immunity against SARS-CoV-2. Adv Healthc Mater 2023; 12:e2300889. [PMID: 37337388 DOI: 10.1002/adhm.202300889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansol Jeon
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Seonghun Jeon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| |
Collapse
|
7
|
Shi J, Zhao Y, Peng M, Zhu S, Wu Y, Ji R, Shen C. Screening of Efficient Adjuvants for the RBD-Based Subunit Vaccine of SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11040713. [PMID: 37112625 PMCID: PMC10147067 DOI: 10.3390/vaccines11040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more transmissible, with a reduced sensitivity to vaccines targeting the original virus strain. Therefore, developing an effective vaccine against both the original SARS-CoV-2 strain and its variants is an urgent need. It is known that the receptor-binding domain (RBD) in the S protein of SARS-CoV-2 is an important vaccine target, but subunit vaccines usually have lower immunogenicity and efficacy. Thus, selecting appropriate adjuvants to enhance the immunogenicity of protein-based subunit vaccine antigens is necessary. Here, an RBD-Fc subunit vaccine of SARS-CoV-2 has been generated, followed by vaccination in B6 mice, and four adjuvant regimens were investigated, including aluminum salts (Alum) + 3-O-desacyl-4'-monophosphoryl lipid A (MPL), AddaVax, QS21 + MPL, and Imiquimod. The adjuvant potency was evaluated by comparing the elicited polyclonal antibodies titers with measuring binding to RBD and S protein in ELISA and Western blot analysis, and also the cross-neutralizing antibodies titers using a pseudovirus infection assay of hACE2-expressing 293T cells, with pseudoviruses expressing the S protein of the SARS-CoV-2 original strain and Delta strain. The presence of QS21 + MPL adjuvant induced stronger polyclonal antibody response and neutralization potency blocking the original strain and Delta strain, as compared with the non-adjuvant RBD-Fc group and other adjuvant groups. Meanwhile, Imiquimod even had a negative effect in inducing specific antibodies and cross-neutralizing antibody production as an adjuvant.
Collapse
Affiliation(s)
- Juan Shi
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Suyue Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Ruixue Ji
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Ehteshaminia Y, Jalali SF, Jadidi-Niaragh F, Enderami SE, Pagheh AS, Akbari E, Kenari SA, Hassannia H. Enhancement of immunogenicity and neutralizing responses against SARS-CoV-2 spike protein using the Fc fusion fragment. Life Sci 2023; 320:121525. [PMID: 36841470 PMCID: PMC9951089 DOI: 10.1016/j.lfs.2023.121525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
AIMS Vaccination has played an important role in protecting against death and the severity of COVID-19. The recombinant protein vaccine platform has a long track record of safety and efficacy. Here, we fused the SARS-CoV-2 spike S1 subunit to the Fc region of IgG and investigated immunogenicity, reactivity to human vaccinated sera, and neutralizing activity as a candidate protein vaccine. MATERIALS AND METHOD We evaluated the immunogenicity of CHO-expressed S1-Fc fusion protein and tag-free S1 protein in rabbits via the production of S1-specific polyclonal antibodies. We subsequently compared the neutralizing activities of sera from immunized rabbits and human-vaccinated individuals using a surrogate Virus Neutralization Test (sVNT). KEY FINDINGS The results indicate that S1-specific polyclonal antibodies were induced in all groups; however, antibody levels were higher in rabbits immunized with S1-Fc fusion protein than tag-free S1 protein. Moreover, the reactivity of human vaccinated sera against S1-Fc fusion protein was significantly higher than tag-free S1 protein. Lastly, the results of the virus-neutralizing activity revealed that vaccination with S1-Fc fusion protein induced the highest level of neutralizing antibody response against SARS-CoV-2. SIGNIFICANCE Our results demonstrate that the S1 protein accompanied by the Fc fragment significantly enhances the immunogenicity and neutralizing responses against SARS-CoV-2. It is hoped that this platform can be used for human vaccination.
Collapse
Affiliation(s)
- Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Esmaeil Akbari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
10
|
Lousada CM. Interactions between glucosides of the tip of the S1 subunit of SARS-CoV-2 spike protein and dry and wet surfaces of CuO and Cu-A model for the surfaces of coinage metals. Colloids Surf B Biointerfaces 2022; 214:112465. [PMID: 35334309 PMCID: PMC8940556 DOI: 10.1016/j.colsurfb.2022.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Despite their importance there is little knowledge at the atomic scale on the interactions between fragments of SARS-CoV-2 and inorganic materials. Such knowledge is important to understand the survival of the virus at surfaces and for the development of antiviral materials. Here is reported a study of the interactions between glucoside monomers of the tip of the S1 subunit of SARS-CoV-2 spike protein with dry and wet surfaces of CuO and Cu, performed with dispersion corrected density functional theory—DFT. The three glucoside monomers that constitute the tip of S1: 6VSB, 6VXX and 6X6P, were adsorbed onto dry and wet CuO(111) and Cu(110) with different orientations and surface alignments. There are large differences—of up to 1.3 eV—in binding energies between these monomers and the surfaces. These differences depend on: the type of surface; if the surface is wet or dry; if the glucosidic O-atom points towards or away from the surfaces; and to a smaller extent on the surface alignment of the monomers. All monomers bind strongly to the surfaces via molecular adsorption that does not involve bond breaking in the monomers at this stage. 6VSB has the larger adsorption energies—that reach 2.2 eV—due to its larger dipole moment. Both materials bind the monomers more strongly when their surfaces are dry. At Cu(110) the bonds are on average 1 eV stronger when the surface is dry when compared to wet. The difference between dry and wet CuO(111) is smaller, in the order of 0.2 eV. Overall, it is here shown that the stability of the monomers of the tip of the spike protein of the virus is very different at different surfaces. For a given surface the larger binding energies in dry conditions could explain the differences in the surface stability of the spike protein depending on the presence of moisture.
Collapse
Affiliation(s)
- Cláudio M Lousada
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|