2
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Idrovo-Hidalgo T, Pignataro MF, Bredeston LM, Elias F, Herrera MG, Pavan MF, Foscaldi S, Suireszcz M, Fernández NB, Wetzler DE, Paván CH, Craig PO, Roman EA, Ruberto LAM, Noseda DG, Ibañez LI, Czibener C, Ugalde JE, Nadra AD, Santos J, D'Alessio C. Deglycosylated RBD produced in Pichia pastoris as a low-cost sera COVID-19 diagnosis tool and a vaccine candidate. Glycobiology 2024; 34:cwad089. [PMID: 37944064 DOI: 10.1093/glycob/cwad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.
Collapse
Affiliation(s)
- Tommy Idrovo-Hidalgo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pignataro
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
| | - Luis M Bredeston
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
| | - Fernanda Elias
- Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468 C1440FFX, Buenos Aires, Argentina
| | - María G Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Mayra Suireszcz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Natalia B Fernández
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Diana E Wetzler
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Carlos H Paván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, LANAIS-PROEM, Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Patricio O Craig
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Ernesto A Roman
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto Antártico Argentino, Ministerio de Relaciones Exteriores y Culto, Av. 25 de Mayo 1147, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Diego G Noseda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Lorena I Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Cecilia Czibener
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Juan E Ugalde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Javier Santos
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Raoufi E, Hosseini F, Onagh B, Salehi-Shadkami M, Mehrali M, Mohsenzadegan M, Ho JQ, Bigdelou B, Sepand MR, Webster TJ, Zanganeh S, Farajollahi MM. Designing and developing a sensitive and specific SARS-CoV-2 RBD IgG detection kit for identifying positive human samples. Clin Chim Acta 2023; 542:117279. [PMID: 36871661 PMCID: PMC9985519 DOI: 10.1016/j.cca.2023.117279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND More than 3 y into the coronavirus 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to undergo mutations. In this context, the Receptor Binding Domain (RBD) is the most antigenic region among the SARS-CoV-2 Spike protein and has emerged as a promising candidate for immunological development. We designed an IgG-based indirect enzyme-linked immunoassay (ELISA) kit based on recombinant RBD, which was produced from the laboratory to 10 L industry scales in Pichia pastoris. METHODS A recombinant-RBD comprising 283 residues (31 kDa) was constructed after epitope analyses. The target gene was initially cloned into an Escherichia coli TOP10 genotype and transformed into Pichia pastoris CBS7435 muts for protein production. Production was scaled up in a 10 L fermenter after a 1 L shake-flask cultivation. The product was ultrafiltered and purified using ion-exchange chromatography. IgG-positive human sera for SARS-CoV-2 were employed by an ELISA test to evaluate the antigenicity and specific binding of the produced protein. RESULTS Bioreactor cultivation yielded 4 g/l of the target protein after 160 h of fermentation, and ion-exchange chromatography indicated a purity > 95%. A human serum ELISA test was performed in 4 parts, and the ROC area under the curve (AUC) was > 0.96 for each part. The mean specificity and sensitivity of each part was 100% and 91.5%, respectively. CONCLUSION A highly specific and sensitive IgG-based serologic kit was developed for improved diagnostic purposes in patients with COVID-19 after generating an RBD antigen in Pichia pastoris at laboratory and 10 L fermentation scales.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Onagh
- Department of Biochemistry, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Marjan Mehrali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Iran University of Medical Sciences, Tehran, Iran
| | - Jim Q Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Program in Materials Science, UFPI, Teresina, Brazil
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States.
| | | |
Collapse
|
7
|
Shi J, Zheng J, Zhang X, Tai W, Odle AE, Perlman S, Du L. RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge. Transl Res 2022; 248:11-21. [PMID: 35489692 PMCID: PMC9045870 DOI: 10.1016/j.trsl.2022.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Multiple SARS-CoV-2 variants are identified with higher rates of transmissibility or greater disease severity. Particularly, recent emergence of Omicron variant with rapid human-to-human transmission posts new challenges to the current prevention strategies. In this study, following vaccination with an mRNA vaccine encoding SARS-CoV-2 receptor-binding domain (RBD-mRNA), we detected serum antibodies that neutralized pseudoviruses expressing spike (S) protein harboring single or multiple mutations, as well as authentic SARS-CoV-2 variants, and evaluated its protection against SARS-CoV-2 infection. The vaccine induced durable antibodies that potently neutralized prototypic strain and B.1.1.7 lineage variant pseudoviruses containing N501Y or D614G mutations alone or in combination with a N439K mutation (B.1.258 lineage), with a L452R mutation (B.1.427 or B.1.429 lineage), or a L452R-E484Q double mutation (B.1.617.1 variant), although neutralizing activity against B.1.1.7 lineage variant containing 10 amino acid changes in the S protein was slightly reduced. The RBD-mRNA-induced antibodies exerted moderate neutralization against authentic B.1.617.2 and B.1.1.529 variants, and pseudotyped B.1.351 and P.1 lineage variants containing K417N/T, E484K, and N501Y mutations, the B.1.617.2 lineage variant harboring L452R, T478K, and P681R mutations, and the B.1.1.529 lineage variant containing 38 mutations in the S protein. Particularly, RBD-mRNA vaccine completely protected mice from challenge with a virulent mouse-adapted SARS-CoV-2 variant. Among these lineages, B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529 belong to Alpha, Beta, Gamma, Delta, and Omicron variants, respectively. Our observations reveal that RBD-mRNA vaccine is promising and highlights the need to design novel vaccines with improved neutralization against current and future pandemic SARS-CoV-2 variants.
Collapse
Key Words
- ace2, angiotensin converting enzyme 2
- covid-19, coronavirus disease 2019
- e, envelope
- i.d., intradermally
- lnps, lipid nanoparticles
- n, nucleocapsid
- ntd, n-terminal domain
- m, membrane
- pfu, plaque-forming unit
- prnt, plaque reduction neutralization assay
- rbd, receptor-binding domain
- s, spike
- sars-cov-2, severe acute respiratory syndrome coronavirus-2
- vlps, virus-like particles
- vocs, variants of concern
- vois, variants of interest
Collapse
Affiliation(s)
- Juan Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Jian Zheng
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Abby E Odle
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa.
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York.
| |
Collapse
|