1
|
Bai Y, Lei H, Song W, Shin SC, Wang J, Xiao B, Koçer ZA, Song MS, Webster R, Webby RJ, Wong SS, Zanin M. Amino acids in the polymerase complex of shorebird-isolated H1N1 influenza virus impact replication and host-virus interactions in mammalian models. Emerg Microbes Infect 2024; 13:2332652. [PMID: 38517705 PMCID: PMC11018082 DOI: 10.1080/22221751.2024.2332652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.
Collapse
Affiliation(s)
- Yaqin Bai
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Hui Lei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection, Hong Kong SAR, People's Republic of China
| | - Wenjun Song
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People’s Republic of China
| | | | - Jiaqi Wang
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Biying Xiao
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Zeynep A. Koçer
- Emerging Viral Diseases Laboratory, Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Izmir, Türkiye
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University Medical School, Chungbuk, Korea
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard J. Webby
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection, Hong Kong SAR, People's Republic of China
| |
Collapse
|
2
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|