1
|
Azeez SO, Adeboye SE. Advances in understanding plant-pathogen interactions: insights from tomato as a model system. Virusdisease 2024; 35:537-552. [PMID: 39464738 PMCID: PMC11502661 DOI: 10.1007/s13337-024-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of plant diseases coupled with climate change on agriculture worldwide cannot be overemphasized from negative effects on crop yield as well as economy to food insecurity. The model plants are essential for understanding the intricacies of plant-pathogen interactions. One of such plants is the tomato (Solanum lycopersicum L.). Researchers hope to increase tomato productivity and boost its resilience to pathogen attacks by utilizing OMICS and biotechnological methods. With an emphasis on tomato viral infections, this review summarizes significant discoveries and developments from earlier research. The analysis elucidates ongoing efforts to advance plant pathology by exploring the implications for sustainability and tomato production.
Collapse
Affiliation(s)
| | - Seyi Ebun Adeboye
- Agricultural Biotechnology Department, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
2
|
Jammes M, Golyaev V, Fuentes A, Laboureau N, Urbino C, Plissonneau C, Peterschmitt M, Pooggin MM. Transcriptome and small RNAome profiling uncovers how a recombinant begomovirus evades RDRγ-mediated silencing of viral genes and outcompetes its parental virus in mixed infection. PLoS Pathog 2024; 20:e1011941. [PMID: 38215155 PMCID: PMC10810479 DOI: 10.1371/journal.ppat.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.
Collapse
Affiliation(s)
- Margaux Jammes
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Nathalie Laboureau
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Cica Urbino
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Michel Peterschmitt
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
3
|
Claverie S, Hoareau M, Chéhida SB, Filloux D, Varsani A, Roumagnac P, Martin DP, Lett JM, Lefeuvre P. Metagenomics reveals the structure of Mastrevirus-host interaction network within an agro-ecosystem. Virus Evol 2023; 9:vead043. [PMID: 37475836 PMCID: PMC10354507 DOI: 10.1093/ve/vead043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
As highly pervasive parasites that sometimes cause disease, viruses are likely major components of all natural ecosystems. An important step towards both understanding the precise ecological roles of viruses and determining how natural communities of viral species are assembled and evolve is obtaining full descriptions of viral diversity and distributions at ecosystem scales. Here, we focused on obtaining such 'community-scale' data for viruses in a single genus. We chose the genus Mastrevirus (family Geminiviridae), members of which have predominantly been found infecting uncultivated grasses (family Poaceae) throughout the tropical and sub-tropical regions of the world. We sampled over 3 years, 2,884 individual Poaceae plants belonging to thirty different species within a 2-ha plot which included cultivated and uncultivated areas on the island of Reunion. Mastreviruses were found in ∼8 per cent of the samples, of which 96 per cent did not have any discernible disease symptoms. The multitude of host-virus associations that we uncovered reveals both the plant species that most commonly host mastreviruses and the mastrevirus species (such as maize streak virus and maize streak Reunion virus) that have especially large host ranges. Our findings are consistent with the hypothesis that perennial plant species capable of hosting years-long mixed mastrevirus infections likely play a disproportionately important role in the generation of inter-species and inter-strain mastrevirus recombinants.
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, F-97410 St Pierre, La Réunion, France
| | | | | | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | | | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
5
|
Noris E, Pegoraro M, Palzhoff S, Urrejola C, Wochner N, Kober S, Ruoff K, Matić S, Schnepf V, Weisshaar N, Wege C. Differential Effects of RNA-Dependent RNA Polymerase 6 (RDR6) Silencing on New and Old World Begomoviruses in Nicotiana benthamiana. Viruses 2023; 15:v15040919. [PMID: 37112899 PMCID: PMC10143181 DOI: 10.3390/v15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.
Collapse
Affiliation(s)
- Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Sandra Palzhoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Catalina Urrejola
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nicolai Wochner
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Sigi Kober
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Kerstin Ruoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Vera Schnepf
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nina Weisshaar
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|