1
|
Chen J, Cheng Z, Chen J, Qian L, Wang H, Liu Y. Advances in human norovirus research: Vaccines, genotype distribution and antiviral strategies. Virus Res 2024; 350:199486. [PMID: 39428038 PMCID: PMC11539660 DOI: 10.1016/j.virusres.2024.199486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Norovirus, belonging to the Caliciviridae family, is a non-enveloped, positive-sense single-stranded RNA virus. It is widely acknowledged as a significant etiological agent responsible for non-bacterial acute gastroenteritis and considered a major cause thereof. Norovirus is primarily tranmitted via fecal-oral route, but can also be transmitted via airborne routes. Clinical manifestations often include symptoms associated with acute gastroenteritis, like nausea, vomiting, watery diarrhea, stomach cramps, and others. Due to the specific pathogenic mechanism of the virus, and genomic diversity, there are currently no preventive vaccines or effective antiviral drugs available for treating norovirus-induced acute gastroenteritis infections. The management of such infections mainly relies on oral rehydration therapy while prevention necessitates adherence to personal hygiene measures. The present paper discusses the nature, transmission route, clinical manifestations, immune response mechanism, and vaccine research of Norovirus. The objective of this review manuscript is to systematically gather, analyze, and summarize recent research and investigations on norovirus in order to enhance our understanding of its characteristics and pathogenesis. This not only facilitates subsequent researchers in acquiring a more expedited and comprehensive grasp of the existing knowledge about norovirus but also provides clearer directions and goals for future studies.
Collapse
Affiliation(s)
- JunLi Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - ZhengChao Cheng
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Jing Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Lingling Qian
- Central laboratory of Changshu Medicine Examination Institute, Changshu, Jiangsu 215500, PR China.
| | - Haoran Wang
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| | - YuWei Liu
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| |
Collapse
|
2
|
Deák G, Prangate R, Croitoru C, Matei M, Boboc M. The first detection of SARS-CoV-2 RNA in the wastewater of Bucharest, Romania. Sci Rep 2024; 14:21730. [PMID: 39289536 PMCID: PMC11408638 DOI: 10.1038/s41598-024-72854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been previously used as a tool for pathogen identification within communities. After the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) outbreak, in 2020, Daughton proposed the implementation of a wastewater surveillance strategy that could determine the incidence of COVID-19 (coronavirus disease 2019) nationally. Individuals in various stages of SARS-CoV-2 infection, including presymptomatic, asymptomatic and symptomatic patients, can be identified as carriers of the virus in their urine, saliva, stool and other bodily secretions. Studies using this method were conducted to monitor the prevalence of the virus in high-density populations, such as cities but also in smaller communities, such as schools and college campuses. The aim of this pilot study was to assess the feasibility and effectiveness of wastewater surveillance in Bucharest, Romania, and wastewater samples were collected weekly from seven locations between July and September 2023. RNA (ribonucleic acid) extraction, followed by dPCR (digital polymerase chain reaction) analysis, was performed to detect viral genetic material. Additionally, NGS (next generation sequencing) technology was used to identify the circulating variants within the wastewater of Bucharest, Romania. Preliminary results indicate the successful detection of SARS-CoV-2 RNA in wastewater, providing valuable insights into the circulation of the virus within the community.
Collapse
Affiliation(s)
- György Deák
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Raluca Prangate
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania.
| | - Cristina Croitoru
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Monica Matei
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Mădălina Boboc
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| |
Collapse
|
3
|
Saidian H, Daugberg R, Jensen LH, Schoos AMM, Rytter MJH. Children hospitalised with gastroenteritis before and during the COVID-19 pandemic. Acta Paediatr 2024. [PMID: 39235259 DOI: 10.1111/apa.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
AIMS The COVID-19 pandemic altered the pattern of many paediatric infections. We aimed to assess the incidence and characteristics of children hospitalised with gastroenteritis during the early and the late pandemic, relative to previous years. METHODS In a retrospective study, we collected data from patient files of children aged 1 month to 5 years, admitted with gastroenteritis to a paediatric department in Denmark during January-June, of 2017 to 2021, comparing incidence rates and clinical features in the early pandemic (March to June 2020), and late pandemic period (January to June 2021), to similar pre-pandemic months. RESULTS In the early pandemic, admission rates per 1000 children/month declined to 0.5 (95% CI: 0.3-0.6) from pre-pandemic rates of 1.6 (95% CI: 1.4-1.7) (p < 0.0001) and increased in the late pandemic to 2.2 (95% CI: 1.9-2.6) (p = 0.006). Children admitted in the late pandemic period were older than those admitted previously. CONCLUSION A resurgence of gastroenteritis in children occurred in the spring of 2021, with higher hospital admission rates of children, who were older, but not more severely ill than previously.
Collapse
Affiliation(s)
- Hamida Saidian
- Department of Paediatrics and Adolescent Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Rie Daugberg
- Department of Paediatrics and Adolescent Medicine, Slagelse Hospital, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lise Heilmann Jensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Paediatrics, Zealand University Hospital, Roskilde, Denmark
| | - Ann-Marie Malby Schoos
- Department of Paediatrics and Adolescent Medicine, Slagelse Hospital, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Herlev and Gentofte Hospital, COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, University of Copenhagen, Copenhagen, Denmark
| | - Maren Johanne Heilskov Rytter
- Department of Paediatrics and Adolescent Medicine, Slagelse Hospital, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Xu D, Li J, Han L, Chen D, Bao W, Li L, Wang H, Shui J, Liang R, Liu Y, Liu Y, Cai K, Chen W. Epidemics and diversity of norovirus variants with acute gastroenteritis outbreak in Hongshan District, Wuhan City, China, 2021-2023. J Infect Public Health 2024; 17:102499. [PMID: 39067200 DOI: 10.1016/j.jiph.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Norovirus is the predominant pathogen causing foodborne illnesses and acute gastroenteritis (AGE) outbreaks worldwide, imposing a significant disease burden. This study aimed to investigate the epidemiological characteristics and genotypic diversity of norovirus outbreaks in Hongshan District, Wuhan City. METHODS A total of 463 AGE cases from 39 AGE-related outbreaks in Hongshan District between January 1, 2021, and June 30, 2023, were included in the study. Reverse transcription-polymerase chain reaction (RT-PCR) was used to identify norovirus types GI and GII in anal swab samples from all cases. Norovirus-positive samples were sequenced and analyzed for the open reading frame (ORF) 1/ORF2 hinge region. RESULTS 26 norovirus infectious outbreaks were reported among 39 acute diarrheal outbreaks, including 14 outbreaks in kindergartens, 8 in elementary schools, and 4 in universities. Based on clinical symptoms and epidemiological investigations, a total of 1295 individuals were identified as having been exposed to norovirus, yielding an attack rate of 35.75 %. A higher proportion of outbreaks was observed during the winter and spring seasons (38.46 %). Additionally, norovirus-positive samples were subjected to sequencing and analysis of the open reading frame (ORF) 1/ORF2 hinge region. Genotypic data for norovirus was successfully obtained from 18 (69.23 %) of the infectious outbreaks, revealing 10 distinct recombinant genotypes. GII.4 Sydney 2012 [P31] and GII.17[P17] were the predominant strains in 2021 and 2022, GII.3 [P12] emerged as the dominant strain in 2023. CONCLUSION Norovirus outbreaks in Hongshan District predominantly occurred in crowded educational institutions, with peaks in the cold season and a high attack rate in universities. GII.3 [P12] has become the locally predominant strain.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Jing Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Lingyan Han
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Ding Chen
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Wubo Bao
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Li Li
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Huawei Wang
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Jinglin Shui
- Wuhan Hongshan Center for Disease Control and Prevention, Wuhan, Hubei 430065, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingle Liu
- The State Key Laboratory of Virology of China,Wuhan, Hubei 430072, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Wu C, Fu Z, Xie C, Zhao J, He F, Jiao B, Jiao B. Epidemiological Characteristics and Genotypic Features of Rotavirus and Norovirus in Jining City, 2021-2022. Viruses 2024; 16:925. [PMID: 38932216 PMCID: PMC11209223 DOI: 10.3390/v16060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Diarrhea, often caused by viruses like rotavirus (RV) and norovirus (NV), is a global health concern. This study focuses on RV and NV in Jining City from 2021 to 2022. Between 2021 and 2022, a total of 1052 diarrhea samples were collected. Real-Time Quantitative Fluorescent Reverse Transcriptase-PCR was used to detect RV-A, NV GI, and NV GII. For RV-A-positive samples, VP7 and VP4 genes were sequenced for genotype analysis, followed by the construction of evolutionary trees. Likewise, for NV-GII-positive samples, VP1 and RdRp genes were sequenced for genotypic analysis, and evolutionary trees were subsequently constructed. Between 2021 and 2022, Jining City showed varying detection ratios: RV-A alone (excluding co-infection of RV-A and NV GII) at 7.03%, NV GI at 0.10%, NV GII alone (excluding co-infection of RV-A and NV GII) at 5.42%, and co-infection of RV-A and NV GII at 1.14%. The highest RV-A ratios were shown in children ≤1 year and 2-5 years. Jining, Jinxiang County, and Liangshan County had notably high RV-A ratios at 24.37% (excluding co-infection of RV-A and NV GII) and 18.33% (excluding co-infection of RV-A and NV GII), respectively. Jining, Qufu, and Weishan had no RV-A positives. Weishan showed the highest NV GII ratios at 35.48% (excluding co-infection of RV-A and NV GII). Genotype analysis showed that, in 2021, G9P[8] and G2P[4] were dominant at 94.44% and 5.56%, respectively. In 2022, G8P[8], G9P[8], and G1P[8] were prominent at 75.86%, 13.79%, and 10.35%, respectively. In 2021, GII.3[P12], GII.4[P16], and GII.4[P31] constituted 71.42%, 14.29%, and 14.29%, respectively. In 2022, GII.3[P12] and GII.4[P16] accounted for 55.00% and 45.00%, respectively. RV-A and NV showed varying patterns for different time frames, age groups, and regions within Jining. Genotypic shifts were also observed in prevalent RV-A and NV GII strains in Jining City from 2021 to 2022. Ongoing monitoring of RV-A and NV is recommended for effective prevention and control.
Collapse
Affiliation(s)
- Changjing Wu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; (C.W.); (C.X.); (J.Z.)
| | - Zhongyan Fu
- Department of Infectious Disease Control, Shandong Center for Disease Control and Prevention, Jinan 250001, China;
| | - Cuihua Xie
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; (C.W.); (C.X.); (J.Z.)
| | - Jian Zhao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; (C.W.); (C.X.); (J.Z.)
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; (C.W.); (C.X.); (J.Z.)
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| |
Collapse
|
6
|
Shirai T, Phadungsombat J, Ushikai Y, Yoshikaie K, Shioda T, Sakon N. Epidemiological Features of Human Norovirus Genotypes before and after COVID-19 Countermeasures in Osaka, Japan. Viruses 2024; 16:654. [PMID: 38675994 PMCID: PMC11055107 DOI: 10.3390/v16040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
We investigated the molecular epidemiology of human norovirus (HuNoV) in all age groups using samples from April 2019 to March 2023, before and after the COVID-19 countermeasures were implemented. GII.2[P16] and GII.4[P31], the prevalent strains in Japan before COVID-19 countermeasures, remained prevalent during the COVID-19 pandemic, except from April to November 2020; in 2021, the prevalence of GII.2[P16] increased among children. Furthermore, there was an increase in the prevalence of GII.4[P16] after December 2022. Phylogenetic analysis of GII.P31 RdRp showed that some strains detected in 2022 belonged to a different cluster of other strains obtained during the present study period, suggesting that HuNoV strains will evolve differently even if they have the same type of RdRp. An analysis of the amino acid sequence of VP1 showed that some antigenic sites of GII.4[P16] were different from those of GII.4[P31]. The present study showed high infectivity of HuNoV despite the COVID-19 countermeasures and revealed changes in the prevalent genotypes and mutations of each genotype. In the future, we will investigate whether GII.4[P16] becomes more prevalent, providing new insights by comparing the new data with those analyzed in the present study.
Collapse
Affiliation(s)
- Tatsuya Shirai
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan; (T.S.)
| | | | - Yumi Ushikai
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan; (T.S.)
| | - Kunihito Yoshikaie
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan; (T.S.)
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan; (T.S.)
| |
Collapse
|
7
|
Jacobsen S, Faber M, Altmann B, Mas Marques A, Bock CT, Niendorf S. Impact of the COVID-19 pandemic on norovirus circulation in Germany. Int J Med Microbiol 2024; 314:151600. [PMID: 38246091 DOI: 10.1016/j.ijmm.2024.151600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Human norovirus is a major cause of viral gastroenteritis in all age groups. The virus is constantly and rapidly changing, allowing mutations and recombination events to create great diversity of circulating viruses. With the start of the COVID-19 pandemic in 2020, a wide range of public health measures were introduced worldwide to control human-to-human transmission of SARS-CoV-2. In Germany, control measures such as distance rules, contact restrictions, personal protection equipment as well as intensive hand hygiene were introduced. To better understand the effect of the measures to control the COVID-19 pandemic on incidence and the molecular epidemiological dynamics of norovirus outbreaks in Germany, we analyzed national notification data between July 2017 and December 2022 and characterized norovirus sequences circulating between January 2018 and December 2022. Compared to a reference period before the pandemic, the incidence of notified norovirus gastroenteritis decreased by 89.7% to 9.6 per 100,000 during the 2020/2021 norovirus season, corresponding to an incidence rate ratio (IRR) of 0.10. Samples from 539 outbreaks were genotyped in two regions of the viral genome from pre-pandemic (January 2018 to February 2020) and samples from 208 outbreaks during pandemic time period (March 2020 to December 2022). As expected, norovirus outbreaks were mainly found in child care facilities and nursing homes. In total, 36 genotypes were detected in the study period. A high proportion of recombinant strains (86%) was found in patients, the proportion of detected recombinant viruses did not vary between the pre-pandemic and pandemic phase. The proportion of the predominant recombinant strain GII.4 Sydney[P16] was unchanged before pandemic and during pandemic at 37.5%. The diversity of most common genotypes in nursing homes and child care facilities showed a different proportion of genotypes causing outbreaks. In nursing homes as well as in child care facilities GII.4 Sydney[P16] was predominant during the whole study period. Compared to the nursing homes, a greater variety of genotypes at the expense of GII.4 Sydney[P16] was detected in child care facilities. Furthermore, the overall proportion of recombinant strain GII.3[P12] increased during the pandemic, due to outbreaks in child care facilities. The COVID-19 pandemic had a high impact on the occurrence of sporadic cases and norovirus outbreaks in Germany, leading to a near suppression of the typical norovirus winter season following the start of the pandemic. The number of norovirus-associated outbreak samples sent to the Consultant Laboratory dropped by 63% during the pandemic. We could not identify a clear influence on circulating norovirus genotypes. The dominance of GII.4 Sydney recombinant strains was independent from the pandemic. Further studies are needed to follow up on the diversity of less predominant genotypes to see if the pandemic could have acted as a bottleneck to the spread of previously minoritized genotypes like GII.3[P12].
Collapse
Affiliation(s)
- Sonja Jacobsen
- Consultant Laboratory for Norovirus, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Mirko Faber
- Department of Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Britta Altmann
- Department of Infectious Disease, Robert Koch Institute, 13353 Berlin, Germany
| | - Andreas Mas Marques
- Consultant Laboratory for Norovirus, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Disease, Robert Koch Institute, 13353 Berlin, Germany
| | - Sandra Niendorf
- Consultant Laboratory for Norovirus, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|