1
|
Adib AA, Karim MM. Design of therapeutic siRNAs for potential application to infection with chikungunya virus. Heliyon 2025; 11:e41824. [PMID: 39897885 PMCID: PMC11782961 DOI: 10.1016/j.heliyon.2025.e41824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Emergence of the Chikungunya virus (CHIKV) is a new threat in the world. The disastrous effect of this virus and the unavailability of specific drugs complicated the control and management of the disease. The development of a siRNA-based drug using multiple computational tools could be a way out as one of its therapeutics. Currently, very few siRNAs against CHIKV have been computationally designed and published. Here, we considered various parts of the CHIKV genome encoding different essential protein-coding genes for designing siRNAs with a view to silencing them, thereby rendering the virus inactive. Seven potential primary siRNAs were constructed, of which, five are hereafter recommended to be used as a therapeutic tool against the virus.
Collapse
Affiliation(s)
- Ahmed Ahsan Adib
- Department of Microbiology, University of Dhaka, Dhaka, 1100, Bangladesh
| | | |
Collapse
|
2
|
Yaacoub C, Wehbe R, Roufayel R, Fajloun Z, Coutard B. Bee Venom and Its Two Main Components-Melittin and Phospholipase A2-As Promising Antiviral Drug Candidates. Pathogens 2023; 12:1354. [PMID: 38003818 PMCID: PMC10674158 DOI: 10.3390/pathogens12111354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Viruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide. Therefore, the discovery of new and effective antiviral agents is desperately needed. Animal venoms are a rich source of bioactive molecules found in natural goods that have been used since ancient times in alternative medicine to treat a variety of human diseases. Recently, and with the onset of the COVID-19 pandemic, scientists have regained their interest in the possible use of natural products, such as bee venom (BV), as a potential antiviral agent to treat viral infections. BV is known to exert many therapeutic activities such as anti-proliferative, anti-bacterial, and anti-inflammatory effects. However, there is limited discussion of the antiviral activity of BV in the literature. Therefore, this review aims to highlight the antiviral properties of BV and its two primary constituents, melittin (MEL) and phospholipase A2 (PLA2), against a variety of enveloped and non-enveloped viruses. Finally, the innovative strategies used to reduce the toxicity of BV and its two compounds for the development of new antiviral treatments are also considered.
Collapse
Affiliation(s)
- Carole Yaacoub
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
- Faculty of Sciences III, Department of Biology, Michel Slayman Tripoli Campus, Lebanese University, Tripoli 1352, Lebanon
| | - Bruno Coutard
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
3
|
Mehta A, Michler T, Merkel OM. siRNA Therapeutics against Respiratory Viral Infections-What Have We Learned for Potential COVID-19 Therapies? Adv Healthc Mater 2021; 10:e2001650. [PMID: 33506607 PMCID: PMC7995229 DOI: 10.1002/adhm.202001650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Acute viral respiratory tract infections (AVRIs) are a major burden on human health and global economy and amongst the top five causes of death worldwide resulting in an estimated 3.9 million lives lost every year. In addition, new emerging respiratory viruses regularly cause outbreaks such as SARS-CoV-1 in 2003, the "Swine flu" in 2009, or most importantly the ongoing SARS-CoV-2 pandemic, which intensely impact global health, social life, and economy. Despite the prevalence of AVRIs and an urgent need, no vaccines-except for influenza-or effective treatments were available at the beginning of the COVID-19 pandemic. However, the innate RNAi pathway offers the ability to develop nucleic acid-based antiviral drugs. siRNA sequences against conserved, essential regions of the viral genome can prevent viral replication. In addition, viral infection can be averted prophylactically by silencing host genes essential for host-viral interactions. Unfortunately, delivering siRNAs to their target cells and intracellular site of action remains the principle hurdle toward their therapeutic use. Currently, siRNA formulations and chemical modifications are evaluated for their delivery. This progress report discusses the selection of antiviral siRNA sequences, delivery techniques to the infection sites, and provides an overview of antiviral siRNAs against respiratory viruses.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| | - Thomas Michler
- Institute of VirologyTechnische Universität MünchenTrogerstr. 30Munich81675Germany
| | - Olivia M. Merkel
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| |
Collapse
|
4
|
Markoutsa E, McGill AR, Singer A, Jadhav H, Mohapatra S, Mohapatra SS. A multifunctional nanoparticle as a prophylactic and therapeutic approach targeting respiratory syncytial virus. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102325. [PMID: 33186695 DOI: 10.1016/j.nano.2020.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Respiratory Syncytial Virus (RSV) has been a major health concern globally for decades, yet no effective prophylactic or treatment regimen is available. The key viral proteins responsible for RSV pathology include the fusion protein (F), the immunomodulatory non-structural-protein 1 (NS1) and the phosphoprotein (P) involved in viral replication. Herein, we developed a novel shell-core multifunctional nanosystem with dual payload: a plasmid construct encoding for shRNAs against NS1 and P, and an anti-fusion peptide (HR2D). Anti-ICAM1 antibody conjugated on the nanoparticle (NP) surface is used to target RSV infected cells. Our data show the potential of this nanosystem as a prophylactic and/or a therapeutic regimen against RSV infection. Furthermore, therapy of RSV infected mice with this nanosystem, in addition to reducing viral load, modulated expression of Th2 and allergy-associated cytokines such as IL4, IL-13 and IL-17 indicating a direct role of this nanosystem in the mechanisms involved in the immunoregulation of disease pathogenesis.
Collapse
Affiliation(s)
- Eleni Markoutsa
- James A Haley VA Hospital, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Andrew R McGill
- James A Haley VA Hospital, Tampa, FL, USA; Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony Singer
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Heta Jadhav
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A Haley VA Hospital, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A Haley VA Hospital, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
6
|
Malekshahi SS, Salimi V, Arefian E, Fatemi-Nasab G, Adjaminejad-Fard S, Yavarian J, Mokhtari-Azad T. Inhibition of Respiratory Syncytial Virus Replication by Simultaneous Targeting of mRNA and Genomic RNA Using Dual-Targeting siRNAs. Mol Biotechnol 2017; 58:767-775. [PMID: 27766578 DOI: 10.1007/s12033-016-9976-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We attempted to generate siRNAs with two active strands, which can simultaneously knock down the expression of mRNA and viral genomic RNA. In this study, short hairpin RNAs (shRNAs) against N and F genes were used. Expression of F and N mRNA transcripts as well as genomic RNA was determined with relative real-time RT-PCR. The RSV load in infected cell culture supernatant was determined by absolute quantitative real-time PCR. We found that (i) in the presence of shRNA-N, a greater reduction in viral genomic RNA was found; (ii) the level of expression at MOI 0.01 was reduced more than MOI 0.1; (iii) reduction in N transcript was greater than F; and (iv) finally, in combination pre-treatment with two shRNAs, the reduction was not significant as compared to single shRNA transfection. shRNAs also inhibited the production of RSV progeny as shown by viral load in infected HEp-2 cells. (i) Virus load reduction was greater at MOI 0.01 than 0.1 and (ii) significant load reduction was not seen with combination shRNA pre-treatment. The antiviral potency was also confirmed by plaque assay and western blot analysis. Our results provided further evidence that RNAi could be a powerful treatment option against respiratory viruses.
Collapse
Affiliation(s)
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghazal Fatemi-Nasab
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Sarvin Adjaminejad-Fard
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran.
| |
Collapse
|
7
|
Singh NK, Meshram CD, Sonwane AA, Dahiya SS, Pawar SS, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector. Mol Biotechnol 2014; 56:91-101. [PMID: 23877894 PMCID: PMC7090658 DOI: 10.1007/s12033-013-9685-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The antiviral potential of small interfering RNAs (siRNAs) targeting rabies virus (RV) polymerase (L) and nucleoprotein (N) genes delivered through lentiviral vector was investigated. For in vitro evaluation, siRNAs expressing BHK-21 cell lines (BHK-L and BHK-N) were developed using transduction with Lenti-L and Lenti-N lentiviruses encoding siRNAs against RV-L and N genes, respectively. When these cell lines were challenged in vitro with RV Pasteur virus-11 (PV-11) strain, there was reduction in number of RV-specific foci and target gene transcripts indicating inhibitory effect on RV multiplication. For in vivo evaluation, mice were treated intracerebrally with lentiviruses and challenged with 20 LD50 of RV challenge virus standard-11 (CVS-11) strain by intramuscular route in masseter muscle. Five out of eight mice treated with Lenti-N survived indicating 62.5 % protection. The control and Lenti-L-treated mice died within 7–10 days indicating lethal nature of challenge virus and no protection. These results demonstrated that siRNA targeting RV-N could not only inhibit RV multiplication, but also conferred protection in mice against lethal RV challenge. These findings have implication on therapeutic use of siRNA targeting RV-N against RV infection.
Collapse
Affiliation(s)
- Niraj K Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Chemically synthesized short interfering RNA (siRNA) has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) (two Paramyxoviruses), and influenza virus (an Orthomyxovirus). As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of single intranasal siRNA against RSV, we now offer two new strategies: (1) second-generation siRNAs, used against the paramyxoviral RNA polymerase large subunit (L), (2) siRNA cocktail with a novel transfection reagent, used against influenza virus. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (a) modified 19-27 nt-long double-stranded siRNAs are functional in the lung, (b) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, (c) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent, (d) cocktail of multiple siRNAs can be highly effective against multiple viral strains and subtypes.
Collapse
Affiliation(s)
- Mouldy Sioud
- grid.55325.340000000403898485Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo Norway
| | | |
Collapse
|
9
|
Douglas JL. In search of a small-molecule inhibitor for respiratory syncytial virus. Expert Rev Anti Infect Ther 2014; 2:625-39. [PMID: 15482225 DOI: 10.1586/14787210.2.4.625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus has been an ongoing health problem for 50 years. Hospitalization rates due to virus-induced respiratory illness continue to be substantial for infants, small children, the elderly and the immunocompromised. The only currently available treatments are a broad-spectrum antiviral and two immunoprophylactic antibodies, all of which are reserved for high-risk patients. The combination of this limited therapeutic repertoire and the lack of a vaccine clearly demonstrates the need to continue the search for more efficacious and safe agents against respiratory syncytial virus. The following is a review on the current progress of that search.
Collapse
|
10
|
Recent advances in diagnosis, prevention, and treatment of human respiratory syncytial virus. Adv Virol 2013; 2013:595768. [PMID: 24382964 PMCID: PMC3872095 DOI: 10.1155/2013/595768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of respiratory infection in infants and the elderly, leading to significant morbidity and mortality. The interdisciplinary fields, especially biotechnology and nanotechnology, have facilitated the development of modern detection systems for RSV. Many anti-RSV compounds like fusion inhibitors and RNAi molecules have been successful in laboratory and clinical trials. But, currently, there are no effective drugs for RSV infection even after decades of research. Effective diagnosis can result in effective treatment, but the progress in both of these facets must be concurrent. The development in prevention and treatment measures for RSV is at appreciable pace, but the implementation into clinical practice still seems a challenge. This review attempts to present the promising diverse research approaches and advancements in the area of diagnosis, prevention, and treatment that contribute to RSV management.
Collapse
|
11
|
Otaki M, Jiang DP, Sasayama M, Nagano-Fujii M, Hotta H. Generation of Recombinant Adenovirus Expressing siRNA against the L mRNA of Measles Virus and Subacute Sclerosing Panencephalitis Virus. Microbiol Immunol 2013; 51:985-91. [DOI: 10.1111/j.1348-0421.2007.tb03995.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Momoko Otaki
- Division of Microbiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Da-Peng Jiang
- Division of Microbiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Mikiko Sasayama
- Division of Microbiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Hak Hotta
- Division of Microbiology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- International Center for Medical Research and Treatment; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| |
Collapse
|
12
|
Lisowski L, Elazar M, Chu K, Glenn JS, Kay MA. The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA. Nucleic Acids Res 2013; 41:3688-98. [PMID: 23396439 PMCID: PMC3616702 DOI: 10.1093/nar/gkt068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.
Collapse
Affiliation(s)
- Leszek Lisowski
- Department of Pediatrics, School of Medicine, Stanford University, 269 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
13
|
Ramirez-Carvajal L, Long CR. Down-regulation of viral replication by lentiviral-mediated expression of short-hairpin RNAs against vesicular stomatitis virus ribonuclear complex genes. Antiviral Res 2012; 95:150-8. [DOI: 10.1016/j.antiviral.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/03/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
|
14
|
Preston FM, Straub CP, Ramirez R, Mahalingam S, Spann KM. siRNA against the G gene of human metapneumovirus. Virol J 2012; 9:105. [PMID: 22676157 PMCID: PMC3393630 DOI: 10.1186/1743-422x-9-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 06/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Human metapneumovirus (hMPV) is a significant viral respiratory pathogen of infants and children, the elderly and immunocompromised individuals. Disease associated with hMPV infection resembles that of human respiratory syncytial virus (RSV) and includes bronchiolitis and pneumonia. The glycosylated G attachment protein of hMPV is required for viral entry in vivo and has also been identified as an inhibitor of innate immune responses. Findings We designed and validated two siRNA molecules against the G gene using A549 cells and demonstrated consistent 88-92% knock-down for one siRNA molecule, which was used in subsequent experiments. Significant reduction of G mRNA in A549 cells infected with hMPV did not result in a reduction in viral growth, nor did it significantly increase the production of type I interferon (α/β) in response to infection. However, there was a moderate increase in IFN-β mRNA expression in response to infection in siG-transfected cells compared to untransfected and si-mismatch-transfected cells. Expression of G by recombinant adenovirus did not affect type I IFN expression. Conclusion G has been previously described as a type I interferon antagonist, although our findings suggest it may not be a significant antagonist.
Collapse
Affiliation(s)
- Faith Maxine Preston
- Clinical Medical Virology Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
15
|
MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 2012; 7:e37169. [PMID: 22606348 PMCID: PMC3351457 DOI: 10.1371/journal.pone.0037169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
Collapse
|
16
|
Shah PS, Schaffer DV. Antiviral RNAi: translating science towards therapeutic success. Pharm Res 2011; 28:2966-82. [PMID: 21826573 PMCID: PMC5012899 DOI: 10.1007/s11095-011-0549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 01/07/2023]
Abstract
Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)-a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates-can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.
Collapse
Affiliation(s)
- Priya S. Shah
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
| | - David V. Schaffer
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
- Department of Bioengineering, University of California, Berkeley, California 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720 USA
| |
Collapse
|
17
|
Abstract
Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.
Collapse
|
18
|
Bohle H, Lorenzen N, Schyth BD. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV). Antiviral Res 2011; 90:187-94. [PMID: 21439327 DOI: 10.1016/j.antiviral.2011.03.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/21/2010] [Accepted: 03/02/2011] [Indexed: 02/08/2023]
Abstract
Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been questioned and the specificity seems to be a general problem in cells originating from both lower and higher vertebrates. Here we show that we are able to reduce the level of viral gene expression and replication specifically in fish cells in vitro. We do so by using 27/25-mer DsiRNAs acting as substrates for dicer for the generation of siRNAs targeting the nucleoprotein N gene of viral hemorrhagic septicemia virus (VHSV). This rhabdovirus infects salmonid fish and is responsible for large yearly losses in aquaculture production. Specificity of the DsiRNA is assured in two ways: first, by using the conventional method of testing a control DsiRNA which should not target the gene of interest. Second, by assuring that replication of a heterologous virus of the same genus as the target virus was not inhibited by the DsiRNA. Target controls are, as we have previously highlighted, essential for verification of the specificity of siRNA-induced interference with virus multiplication, but they are still not in general use.
Collapse
Affiliation(s)
- Harry Bohle
- ADL Diagnostic Chile Ltda, Laboratorio de Diagnóstico y Biotechnología, Puerto Mont, Chile
| | | | | |
Collapse
|
19
|
Abstract
Endogenous RNA-silencing mechanisms have been shown to play a role in regulating viral and host processes during the course of infection. Such interactive processes may involve host cellular and/or viral-encoded microRNAs (miRNAs). Rabies is unique not only in terms of its invariably fatal course once disease signs develop, but it also has a variable incubation period (eclipse phase). It has been recently shown that cells or tissues of different origin have their own specific miRNAs that, in theory, may impact on viral transcription and replication. This may possibly explain, in part, why rabies virus remains dormant at the inoculation site in rabies patients for long periods. Owing to the RNA interference (RNAi) technology, it has been possible to introduce exogenously designed artificial short interfering RNAs (siRNAs) and miRNAs into virus-infected cells for therapeutic purposes. Successful attempts in using RNAi for prevention and treatment of DNA and RNA virus infections both in vitro and in vivo experiments have been reported. The fact that rabies remains incurable has stimulated the development of the therapeutic RNAi strategy. We describe herein preliminary evidence that cellular miRNA may play a role in suppressing viral replication, explaining the eclipse phase, and that artificially designed multitargeting miRNA can successfully inhibit rabies virus transcription and replication in vitro.
Collapse
|
20
|
Kim MS, Kim KH. Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting the G gene. Arch Virol 2010; 156:457-64. [PMID: 21184243 DOI: 10.1007/s00705-010-0882-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi), a mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as an antiviral strategy in animals. In this study, the epithelioma papulosum cyprini (EPC) cell line, in combination with a fugu-U6-promoter-driven shRNA construct designed against G gene, was used to investigate whether short hairpin RNA (shRNA) could inhibit viral hemorrhagic septicemia virus (VHSV) proliferation by sequence-specific RNAi. The results showed that transfection with a shRNA-producing construct (shRNA-VG594) resulted in a sequence-specific knockdown of G gene mRNA in EPC cells. There were no significant differences in IFN-induced Mx1 gene expression among cells transfected with each shRNA vector including shRNA-VG594, -VG594sc (two nucleotides mismatch) and -EGFP (non-specific control), suggesting that knockdown of G gene expression was not due to an IFN response but instead by sequence-specific RNAi. Transfection of EPC cells with shRNA-VG594 conferred resistance to VHSV, and this anti-VHSV effect was not observed when using a two-nucleotide-mismatched shRNA-VG594sc or a shRNA targeting EGFP. Furthermore, shRNA-VG594 expressed in EPC cells did not confer protection against infectious hematopoietic necrosis virus (IHNV), suggesting sequence-specific RNAi-dependent suppression of viral replication.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea
| | | |
Collapse
|
21
|
siRNA for Influenza Therapy. Viruses 2010; 2:1448-1457. [PMID: 21994689 PMCID: PMC3185718 DOI: 10.3390/v2071448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/17/2022] Open
Abstract
Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world’s population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.
Collapse
|
22
|
Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010; 6:e1000764. [PMID: 20169186 PMCID: PMC2820531 DOI: 10.1371/journal.ppat.1000764] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/13/2010] [Indexed: 01/02/2023] Open
Abstract
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts. Short RNAs derived from invading viruses with RNA genomes are important components of antiviral immunity in plants, worms and flies. The regulated generation of these short RNAs, and their engagement by the immune apparatus, is essential for inhibiting viral growth in these organisms. Mammals have the necessary protein components to generate these viral-derived short RNAs (“vsRNAs”), raising the question of whether vsRNAs in mammals are a general feature of infections with RNA viruses. Our work with Hepatitis C, Polio, Dengue, Vesicular Stomatitis, and West Nile viruses in a broad host repertoire demonstrates the generality of RNA virus-derived vsRNA production, and the ability of the cellular short RNA apparatus to engage these vsRNAs in mammalian cells. Detailed analyses of vsRNA and host-derived short RNA populations demonstrate both common and virus-specific features of the interplay between viral infection and short RNA populations. The vsRNA populations described in this work represent a novel dimension in both viral pathogenesis and host response.
Collapse
|
23
|
Intracranial administration of P gene siRNA protects mice from lethal Chandipura virus encephalitis. PLoS One 2010; 5:e8615. [PMID: 20062542 PMCID: PMC2797643 DOI: 10.1371/journal.pone.0008615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/08/2009] [Indexed: 12/24/2022] Open
Abstract
Background In parts of India, Chandipura Virus (CHPV) has emerged as an encephalitis causing pathogen in both epidemic and sporadic forms. This pediatric disease follows rapid course leading to 55–75% mortality. In the absence of specific treatment, effectiveness of RNA interference (RNAi) was evaluated. Methods and Findings Efficacy of synthetic short interfering RNA (siRNA) or short hairpin RNA (shRNA) in protecting mice from CHPV infection was assessed. The target genes were P and M genes primarily because important role of the former in viral replication and lethal nature of the latter. Real time one step RT-PCR and plaque assay were used for the assessment of gene silencing. Using pAcGFP1N1-CHPV-P, we showed that P-2 siRNA was most efficient in reducing the expression of P gene in-vitro. Both quantitative assays documented 2logs reduction in the virus titer when P-2, M-5 or M-6 siRNAs were transfected 2hr post infection (PI). Use of these siRNAs in combination did not result in enhanced efficiency. P-2 siRNA was found to tolerate four mismatches in the center. As compared to five different shRNAs, P-2 siRNA was most effective in inhibiting CHPV replication. An extended survival was noted when mice infected intracranially with 100 LD50 CHPV were treated with cationic lipid complexed 5 µg P-2 siRNA simultaneously. Infection with 10LD50 and treatment with two doses of siRNA first, simultaneously and second 24 hr PI, resulted in 70% survival. Surviving mice showed 4logs less CHPV titers in brain without histopathological changes or antibody response. Gene expression profiles of P-2 siRNA treated mice showed no interferon response. First dose of siRNA at 2hr or 4hr PI with second dose at 24hr resulted in 40% and 20% survival respectively suggesting potential application in therapy. Conclusions The results highlight therapeutic potential of siRNA in treating rapid and fatal Chandipura encephalitis.
Collapse
|
24
|
Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis. J Virol 2009; 83:10869-76. [PMID: 19710142 DOI: 10.1128/jvi.01271-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.
Collapse
|
25
|
Secondary RNA Structure and its Role in RNA Interference to Silence the Respiratory Syncytial Virus Fusion Protein Gene. Mol Biotechnol 2009; 43:200-11. [DOI: 10.1007/s12033-009-9190-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/16/2009] [Indexed: 12/25/2022]
|
26
|
Ruiz S, Schyth B, Encinas P, Tafalla C, Estepa A, Lorenzen N, Coll J. New tools to study RNA interference to fish viruses: Fish cell lines permanently expressing siRNAs targeting the viral polymerase of viral hemorrhagic septicemia virus. Antiviral Res 2009; 82:148-56. [DOI: 10.1016/j.antiviral.2009.02.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/19/2009] [Accepted: 02/25/2009] [Indexed: 01/03/2023]
|
27
|
Barik S. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs. Methods Mol Biol 2009; 487:331-41. [PMID: 19301655 PMCID: PMC7120413 DOI: 10.1007/978-1-60327-547-7_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
28
|
Yue H, Deng S, Yang FL, Li DF, Fu AJ, Yang F, Tang C. Short hairpin RNA targeting NP mRNA inhibiting Newcastle disease virus production and other viral structural mRNA transcription. Virus Genes 2009; 38:143-8. [PMID: 19082701 PMCID: PMC7089332 DOI: 10.1007/s11262-008-0309-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/19/2008] [Indexed: 11/16/2022]
Abstract
Newcastle disease virus (NDV), formally recognized as avian paramyxovirus 1 (APMV-1), is the etiological agent of Newcastle disease (ND), an affliction which can cause severe losses in the poultry industry. Better understanding of the molecular basis of viral structural genes involved with production should contribute significantly toward the development of improved prophylactic and therapeutic reagents to control the infection. Here we show that a short hairpin RNA (shRNA) eukaryotic expression vector targeting nucleocapsid (NP) gene of NDV can potently inhibit NDV production in both primary cells and embryonated chicken eggs. Moreover, shRNA specific for NP abolished the accumulation of not only the corresponding mRNA but also P, HN, F, M gene mRNA. The findings reveal that newly synthesized NP mRNA is essential for NDV transcription and replication, and provide a basis for the development of shRNAs as a prophylaxis and therapy for NDV infection in poultry.
Collapse
Affiliation(s)
- Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, 16 South Section Four, First Ring Round Road, Chengdu, Sichuan 610041 China
| | - Shu Deng
- College of Life Science and Technology, Southwest University for Nationalities, 16 South Section Four, First Ring Round Road, Chengdu, Sichuan 610041 China
| | - Fa-long Yang
- College of Life Science and Technology, Southwest University for Nationalities, 16 South Section Four, First Ring Round Road, Chengdu, Sichuan 610041 China
| | - Ding-fei Li
- Chengdu Fisheries Research Institute, No.5 Baihui Road, West Section one, First Ring Round Road, Chengdu, Sichuan 610072 China
| | - An-jing Fu
- Chengdu Vocational College of Agricultural Science and Technology, 392 Detong Bridge Road, Wenjiang County, Chengdu, Sichuan 611130 China
| | - Fan Yang
- College of Life Science and Technology, Southwest University for Nationalities, 16 South Section Four, First Ring Round Road, Chengdu, Sichuan 610041 China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, 16 South Section Four, First Ring Round Road, Chengdu, Sichuan 610041 China
| |
Collapse
|
29
|
RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J Virol 2008; 82:12221-31. [PMID: 18818323 DOI: 10.1128/jvi.01557-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of morbidity in infants, young children, and the elderly worldwide. Currently, there is no effective vaccine, and antiviral drugs to control infection are limited. RNA interference is a powerful tool amenable to development of antiviral drugs. Using small interfering RNA (siRNA) targeting the RSV P gene (siRNA-P), RSV replication can be silenced both in vitro and in a BALB/c model of RSV infection. In this study, we examine the effect of siRNA prophylaxis on the primary and memory immune response to RSV infection in mice. We show that mice prophylactically treated with siRNA-P to decrease but not eliminate RSV replication exhibit reduced pulmonary inflammation and lung pathogenesis and produce a robust anti-RSV memory response when subsequently challenged with RSV. The pulmonary T-cell memory response was characterized by high numbers of CD44(hi) CD62L(lo) CD4(+) and CD8(+) T cells, M2 peptide tetramer(+) CD8(+) T cells expressing gamma interferon, and an RSV-specific antibody response. The results support the hypothesis that siRNAs can be developed as effective antiviral drugs that can be used to reduce the viral load and parameters of pathogenesis without limiting the induction of the memory immune response.
Collapse
|
30
|
Inhibition of Henipavirus infection by RNA interference. Antiviral Res 2008; 80:324-31. [PMID: 18687361 PMCID: PMC7125758 DOI: 10.1016/j.antiviral.2008.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 01/21/2023]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are recently emerged zoonotic paramyxoviruses exclusively grouped within a new genus, Henipavirus. These viruses cause fatal disease in a wide range of species, including humans. Both NiV and HeV have continued to re-emerge sporadically in Bangladesh and Australia, respectively. There are currently no therapeutics or vaccines available to treat Henipavirus infection and both are classified as BSL4 pathogens. RNA interference (RNAi) is a process by which double-stranded RNA directs sequence-specific degradation of messenger RNA in animal and plant cells. Small interfering RNAs (siRNAs) mediate RNAi by inhibiting gene expression of homologous mRNA and our preliminary studies suggest RNAi may be a useful approach to developing novel therapies for these highly lethal pathogens. Eight NiV siRNA molecules (four L and four N gene specific), two HeV N gene specific, and two non-specific control siRNA molecules were designed and tested for their ability to inhibit a henipavirus minigenome replication system (which does not require the use of live virus) in addition to live virus infections in vitro. In the minigenome assay three out of the four siRNAs that targeted the L gene of NiV effectively inhibited replication. In contrast, only NiV N gene siRNAs were effective in reducing live NiV replication, suggesting inhibition of early, abundantly expressed gene transcripts may be more effective than later, less abundant transcripts. Additionally, some of the siRNAs effective against NiV infection were only partially effective inhibitors of HeV infection. An inverse correlation between the number of nucleotide mismatches and the efficacy of siRNA inhibition was observed. The demonstration that RNAi effectively inhibits henipavirus replication in vitro, is a novel approach and may provide an effective therapy for these highly lethal, zoonotic pathogens.
Collapse
|
31
|
Deffrasnes C, Cavanagh MH, Goyette N, Cui K, Ge Q, Seth S, Templin MV, Quay SC, Johnson PH, Boivin G. Inhibition of Human Metapneumovirus Replication by Small Interfering RNA. Antivir Ther 2008. [DOI: 10.1177/135965350801300603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Human metapneumovirus (hMPV) is a major respiratory viral pathogen in young children, elderly individuals and immunocompromised patients. Despite its major effects related to bronchiolitis, pneumonia and its potential role in recurrent wheezing episodes, there is still no commercial treatment or vaccine available against this paramyxovirus. Methods We tested a therapeutic strategy for hMPV that was based on RNA interference. Results An hMPV genome-wide search for small interfering RNAs (siRNAs) by computational analysis revealed 200 potentially effective 21-mer siRNAs. Initial screening with a luciferase assay identified 57 siRNAs of interest. Further evaluation of their inhibitory potential against the four hMPV subgroups by quantitative real-time reverse transcriptase PCR and plaque immunoassay identified two highly potent siRNAs with 50% inhibitory concentration (IC50) values in the subnanomolar range. siRNA45 targets the nucleoprotein messenger RNA (mRNA) and had IC50 values <0.078 nM against representative strains from the four hMPV subgroups, whereas siRNA60, which targets the phosphoprotein mRNA, had IC50 values between 0.090– <0.078 nM against the same panel of hMPV strains. Longer 25/27-mer siRNAs known as Dicer substrates designed from the top two siRNA candidates were also evaluated and were at least as effective as their corresponding 21-mer siRNAs. Interestingly, the presence of one or two nucleotide mismatches in the target mRNA sequence of some hMPV subgroups did not always affect hMPV inhibition in vitro. Conclusions We successfully identified two highly efficient siRNAs against hMPV targeting essential components of the hMPV replication complex.
Collapse
Affiliation(s)
- Céline Deffrasnes
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | - Marie-Hélène Cavanagh
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | - Nathalie Goyette
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | | | - Qing Ge
- MDRNA Inc., Bothell, WA, USA
- Somagenics Inc., Santa Cruz, CA, USA
| | | | | | | | - Paul H Johnson
- MDRNA Inc., Bothell, WA, USA
- PhaseRx Pharmaceuticals, Seattle, WA, USA
| | - Guy Boivin
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| |
Collapse
|
32
|
Yue H, Li D, Fu A, Ma L, Yang F, Tang C. shRNA-triggered RNAi inhibits expression of NDV NP gene in chicken embryo fibroblast. FRONTIERS OF BIOLOGY IN CHINA : SELECTED PUBLICATIONS FROM CHINESE UNIVERSITIES 2008; 3:433. [PMID: 32288756 PMCID: PMC7111767 DOI: 10.1007/s11515-008-0080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) technology is a powerful tool for identifying gene functions. Chicken embryo fibroblast (CEF) is an ideal model for studying the interaction between avian viruses and their hosts. To establish a methodological platform for RNAi studies in CEF, three plasmid vectors expressing short hairpin RNAs (shRNAs) targeted against the Newcastle disease virus (NDV) NP gene were constructed. One of them, ndv1, was proven effective on blocking viral replication in CEF and chicken embryos. Four hours prior to infection with NDV, the CEF was transfected with the plasmids by Silent-fect. An unrelated shRNA sequence (HK) was used in mock transfection. The expression of a potent shRNA resulted in up to 2.3, 21.1 and 9.8 fold decreases in NP gene expression at 3, 6 and 9 h post infection in CEF, respectively. The ndv1 was able to completely inhibit the replication of the virus in CEF within 48 post infection. Furthermore, the pathological changes in CEF caused by NDV were delayed, and the degree of pathological changes was lighter compared with the mock transfection in the presence of ndv1. When the complex of shRNA-Silent-fect and NDV was co-injected into the allantoic cavity of 10-day-old embryonated eggs with 105 or 106 ELD50 NDV, NDV replication was decreased by 94.14% and 62.15% after 17 h, respectively. These findings suggest that the newly synthesized NP protein is critical for NDV transcription and replication and provide a basis for identifying the functions of viral genes and screening for effective siRNAs against viruses in CEF and chicken embryo by RNAi.
Collapse
Affiliation(s)
- Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
| | - Dingfei Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
- Fisheries Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu, 610072 China
| | - Anjing Fu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611130 China
| | - Li Ma
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610081 China
| | - Falong Yang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041 China
| |
Collapse
|
33
|
Mohapatra SS, Boyapalle S. Epidemiologic, experimental, and clinical links between respiratory syncytial virus infection and asthma. Clin Microbiol Rev 2008; 21:495-504. [PMID: 18625684 PMCID: PMC2493089 DOI: 10.1128/cmr.00054-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virtually all children experience respiratory syncytial virus (RSV) infection at least once during the first 2 years of life, but only a few develop bronchiolitis and more severe disease requiring hospitalization, usually in the first 6 months of life. Children who recover from RSV-induced bronchiolitis are at increased risk for the development of recurrent wheeze and asthma in later childhood. Recent studies suggest that there is an association between RSV-induced bronchiolitis and asthma within the first decade of life but that this association is not significant after age 13. Despite the considerable progress made in our understanding of several aspects of respiratory viral infections, further work needs to be done to clarify the molecular mechanisms of early interactions between virus and host cell and the role of host gene products in the infection process. This review provides a critical appraisal of the literature in epidemiology and experimental research which links RSV infection to asthma. Studies to date demonstrate that there is a significant association between RSV infection and childhood asthma and that preventing severe primary RSV infections can decrease the risk of childhood asthma.
Collapse
Affiliation(s)
- Shyam S Mohapatra
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida College of Medicine, James A Haley Veterans Hospital, 12901 Bruce B Downs Blvd, Tampa, Florida 33612, USA.
| | | |
Collapse
|
34
|
A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16:1437-43. [PMID: 18560417 DOI: 10.1038/mt.2008.130] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Creation of potent oncolytic viruses (OVs) suitable for the clinic may require new strategies in virus design. Replication-competent viruses facilitate a variety of approaches to achieving tumor specificity. Altered expression of microRNAs is a common hallmark of cancer that we demonstrate can be used to alter expression of a potent wild-type viral gene to achieve tumor-specific replication of an engineered vesicular stomatitis virus (VSV). Incorporation of let-7 microRNA complementary sequences within VSV eliminates undesirable replication and associated toxicity in normal cells but permits growth in cancer cells in vitro and in vivo. This is proof of concept that viruses designed to exploit the differential microRNA expression in cancer cells is a viable approach, potentially useful in optimizing oncolytic viral gene expression for maximal antitumor activity and safety.
Collapse
|
35
|
Neznanov N, Dragunsky EM, Chumakov KM, Neznanova L, Wek RC, Gudkov AV, Banerjee AK. Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One 2008; 3:e1887. [PMID: 18382670 PMCID: PMC2268745 DOI: 10.1371/journal.pone.0001887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/26/2008] [Indexed: 12/22/2022] Open
Abstract
Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV) and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2α, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
36
|
Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock. Antiviral Res 2008; 78:170-8. [DOI: 10.1016/j.antiviral.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/20/2022]
|
37
|
Vigne S, Germi R, Duraffour S, Larrat S, Andrei G, Snoeck R, Garin D, Crance JM. Specific Inhibition of Orthopoxvirus Replication by a Small Interfering RNA Targeting the D5R Gene. Antivir Ther 2008. [DOI: 10.1177/135965350801300307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Concerns about the potential use of smallpox in bioterrorism have stimulated interest in the development of novel antiviral treatments. Currently, there are no effective therapies against smallpox and new treatment strategies are greatly needed. Methods In this study, specifically designed small interfering RNAs (siRNAs), targeting five proteins essential for orthopoxvirus replication, were investigated for their ability to inhibit vaccinia virus strain Western Reserve (VACVWR) replication. Results Among these siRNAs, 100 nM siD5R-2, an siRNA targeting the D5 protein, decreased VACVWR replication up to 90% when used either prophylactically or therapeutically in human lung carcinoma A549 cells. This siRNA induced a striking concentration-dependent inhibition of VACVWR replication and a prolonged prophylactic antiviral effect that lasted for 72 h, at a concentration of 100 nM. Confocal microscopy of Alexa–siD5R-2-treated VACVWR-infected cells confirmed a decrease in viral replication. Furthermore, siD5R-2 was shown to specifically reduce the D5R mRNA and protein expression using real-time reverse tran-scriptase-PCR and western blotting analysis, without inducing interferon-β in A549 cells. We also demonstrated the antiviral potency of siD5R-2 against different pathogenic orthopoxviruses, such as cowpox and monkeypox viruses, which were inhibited up to 70% at the lowest concentration (1 nM) tested. Finally, siD5R-2 showed antiviral effects in VACVWR-infected human keratinocyte and fibroblast cell cultures. Conclusions These results suggest that siD5R-2 could be a potential candidate to treat poxvirus infections.
Collapse
Affiliation(s)
- Solenne Vigne
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
| | - Raphaële Germi
- Molecular and Structural Virology Laboratory, Université Joseph Fourier, Centre Hospitalier Universitaire, Grenoble, France
| | - Sophie Duraffour
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Sylvie Larrat
- Molecular and Structural Virology Laboratory, Université Joseph Fourier, Centre Hospitalier Universitaire, Grenoble, France
| | - Graciela Andrei
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Daniel Garin
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
- Ecole du Val-de-Grâce, Paris, France
| | - Jean-Marc Crance
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
| |
Collapse
|
38
|
Abstract
The intranasal administration of siRNA has opened new vistas in drug delivery and respiratory therapy. In this strategy, synthetic siRNA with or without chemical modifications can be applied intranasally. Various delivery vehicles have been tested and optimized. With a few exceptions, all promote significant uptake of siRNA into the lung tissue and offer protection against respiratory viruses such as respiratory syncytial virus (RSV), parainfluenza virus (PIV), and influenza virus. No major adverse immune reaction has been encountered. Nasally applied siRNA remains within the lung and does not have systemic access, as judged by its absence in other major organs such as the lung, liver, heart, and kidney. We provide techniques for using the nose as a specific route for siRNA delivery into the lung of laboratory animals, which has enormous potential for clinical applications.
Collapse
|
39
|
Servan de Almeida R, Keita D, Libeau G, Albina E. Control of ruminant morbillivirus replication by small interfering RNA. J Gen Virol 2007; 88:2307-2311. [PMID: 17622636 DOI: 10.1099/vir.0.82981-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) are two morbilliviruses of economic relevance in African and Asian countries. Although efficient vaccines are available for both diseases, they cannot protect the animals before 14 days post-vaccination. In emergencies, it would be desirable to have efficient therapeutics for virus control. Here, two regions are described in the nucleocapsid genes of PPRV and RPV that can be targeted efficiently by synthetic short interfering RNAs (siRNAs), resulting in a >80 % reduction in virus replication. The effects of siRNAs on the production of viral RNA by real-time quantitative PCR, of viral proteins by flow cytometry and of virus particles by appreciation of the cytopathic effect and virus titration were monitored. The findings of this work highlight the potential for siRNA molecules to be developed as therapeutic agents for the treatment of PPRV and RPV infections.
Collapse
Affiliation(s)
- Renata Servan de Almeida
- CIRAD, Département Systèmes Biologiques, UR-15, Campus International de Baillarguet, 34398 Montpellier, France
| | - Djénéba Keita
- CIRAD, Département Systèmes Biologiques, UR-15, Campus International de Baillarguet, 34398 Montpellier, France
| | - Geneviève Libeau
- CIRAD, Département Systèmes Biologiques, UR-15, Campus International de Baillarguet, 34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, Département Systèmes Biologiques, UR-15, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
40
|
Abstract
Inside eukaryotic cells, small RNA duplexes, called small interfering RNAs (siRNAs), activate a conserved RNA interference (RNAi) pathway which leads to specific degradation of complementary target mRNAs through base-pairing recognition. As with other viruses, studies have shown that replication of the HIV-1 in cultured cells can be targeted and inhibited by synthetic siRNAs. The relative ease of siRNA design and the versatility of RNAi to target a broad spectrum of mRNAs have led to the promise that drug discovery in the RNAi pathway could be effective against pathogens. This review discusses the current experimental principles that guide the application of RNAi against HIV and describes challenges and limitations that need to be surmounted in order for siRNAs to become practical antiviral drugs. The practical use of RNAi therapy for HIV infection will depend on overcoming several challenges, including the ability to establish long-term expression of siRNA without off-target effects and the capacity to counteract mutant escape viruses.
Collapse
Affiliation(s)
- Yamina Bennasser
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| |
Collapse
|
41
|
Smith RM, Smolic R, Volarevic M, Wu GY. Positional effects and strand preference of RNA interference against hepatitis C virus target sequences. J Viral Hepat 2007; 14:194-212. [PMID: 17305886 DOI: 10.1111/j.1365-2893.2006.00794.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hepatitis C virus (HCV) 3'-untranslated region (UTR) and negative-strand RNA sequences contribute cis-acting functions essential to viral RNA replication. Although efficient suppression of HCV replicon RNA in cell culture has been demonstrated with small interfering RNAs (siRNAs) directed against various sequences in the 5' UTR and coding regions, data regarding siRNA targeting of the 3' UTR have been lacking. Furthermore, it has not been definitively shown whether the active constructs, identified to date, exert their effect exclusively via suppression of the replicon positive strand, negative strand or some combination of both strands. In the present study, we assayed inhibitory activity of various siRNAs targeting the 3' UTR by transient transfection in a subgenomic replicon cell culture model. A survey of 13 candidate target sites in the 3'-UTR X sequence indicated a uniformly low activity of siRNA constructs against the steady-state level of replicon. In contrast, the majority of these same siRNAs exhibited high activity against HCV X sequences of either polarity when these targets were presented in the context of a mammalian polymerase II mRNA transcript. Transfection of siRNAs directed against other regions of the replicon revealed differences in the magnitude of inhibitory effects against positive-strand and negative-strand target sites. Strand preference of siRNA activity was further demonstrated through the introduction of base-pair-destabilizing mutations that promote strand-specific targeting. The results suggest that the HCV positive-strand 5' UTR and coding region are efficiently and directly targeted by siRNA, whereas the 3' UTR and the entire negative strand are relatively resistant to RNA interference.
Collapse
Affiliation(s)
- R M Smith
- Division of Gastroenterology-Hepatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | |
Collapse
|
42
|
Mottet-Osman G, Iseni F, Pelet T, Wiznerowicz M, Garcin D, Roux L. Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis. J Virol 2006; 81:2861-8. [PMID: 17192312 PMCID: PMC1865978 DOI: 10.1128/jvi.02291-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short RNA interference is more and more widely recognized as an effective method to specifically suppress viral functions in eukaryotic cells. Here, we used an experimental system that allows suppression of the Sendai virus (SeV) M protein by using a target sequence, derived from the green fluorescent protein gene, that was introduced in the 3' untranslated region of the M protein mRNA. Silencing of the M protein gene was eventually achieved by a small interfering RNA (siRNA) directed against this target sequence. This siRNA was constitutively expressed in a cell line constructed by transduction with an appropriate lentivirus vector. Suppression of the M protein was sufficient to diminish virus production by 50- to 100-fold. This level of suppression had no apparent effect on viral replication and transcription, supporting the lack of M involvement in SeV transcription or replication control.
Collapse
Affiliation(s)
- Geneviève Mottet-Osman
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
43
|
Bitko V, Shulyayeva O, Mazumder B, Musiyenko A, Ramaswamy M, Look DC, Barik S. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth. J Virol 2006; 81:1786-95. [PMID: 17151097 PMCID: PMC1797585 DOI: 10.1128/jvi.01420-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Being highly pathogenic for human and nonhuman primates and the subject of former weapon programmes makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and postexposure intervention, the current response depends on rapid diagnostics, proper isolation procedures and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. Over the past years, enhanced research efforts directed to better understand virus replication and pathogenesis have identified potential new targets for intervention strategies. The authors discuss the most promising therapeutic approaches for Ebola haemorrhagic fever as judged by their efficacy in animal models. The current development in this field encourages discussions on how to move some of the experimental approaches towards clinical application.
Collapse
Affiliation(s)
- Ute Ströher
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E3R2, Canada.
| | | |
Collapse
|
45
|
Moore ML, Peebles RS. Respiratory syncytial virus disease mechanisms implicated by human, animal model, and in vitro data facilitate vaccine strategies and new therapeutics. Pharmacol Ther 2006; 112:405-24. [PMID: 16820210 DOI: 10.1016/j.pharmthera.2006.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 02/07/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis, pneumonia, mechanical ventilation, and respiratory failure in infants in the US. No effective post-infection treatments are widely available, and currently there is no vaccine. RSV disease is the result of virus-induced airway damage and complex inflammatory processes. The outcome of infection depends on host and viral genetics. Here, we review disease mechanisms in primary RSV infection that are implicated by clinical studies, in vitro systems, and animal models. Defining RSV disease mechanisms is difficult because there is a wide range of RSV disease phenotypes in humans, and there are disparities in RSV disease phenotypes among the animal models of RSV infection. However, host factors identified by multiple lines of investigation as playing important roles in RSV pathogenesis are providing key insights. A better understanding of RSV molecular biology and RSV pathogenesis is facilitating rational vaccine design strategies and molecular targets for new therapeutics.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, T-1218 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | |
Collapse
|
46
|
Barik S, Bitko V. Prospects of RNA interference therapy in respiratory viral diseases: update 2006. Expert Opin Biol Ther 2006; 6:1151-60. [PMID: 17049013 DOI: 10.1517/14712598.6.11.1151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Respiratory viruses, such as influenza, parainfluenza and respiratory syncytial virus (RSV), claim millions of lives annually. At present, there is no completely effective vaccine or drug against these highly mutable RNA viruses. Passive antibody therapies for RSV, despite their limited application and staggering cost, enjoy a virtual monopoly in a multibillion-dollar global market. Recently, however, pioneering discoveries have launched RNA interference as a novel, nucleic acid-based therapy against viral pathogens. Specifically, small interfering RNAs (siRNAs) offered protection against respiratory syncytial virus, parainfluenza and influenza. siRNA against RSV has entered Phase I clinical trials in humans, and preliminary reports are promising. If appropriately formulated for improved specificity, delivery and pharmacokinetics, siRNAs may indeed become effective antivirals in the clinics of the future. This paper provides an overview of the prospects and hurdles facing the antiviral siRNA drugs, with special emphasis on RSV.
Collapse
Affiliation(s)
- Sailen Barik
- University of South Alabama College of Medicine, Department of Biochemistry and Molecular Biology, 307 University Blvd, Mobile, Alabama 36688-0002, USA.
| | | |
Collapse
|
47
|
Abstract
Respiratory syncytial virus (RSV) is the foremost respiratory pathogen in newborns and claims millions of lives annually. However, there has been no methodical study of the pathway(s) of entry of RSV or its interaction with nonrespiratory tissues. We and others have recently established a significant association between allergic conjunctivitis and the presence of RSV in the eye. Here we adopt a BALB/c mouse model and demonstrate that when instilled in the live murine eye, RSV not only replicated robustly in the eye but also migrated to the lung and produced a respiratory disease that is indistinguishable from the standard, nasally acquired RSV disease. Ocularly applied synthetic anti-RSV small interfering RNA prevented infection of the eye as well as the lung. RSV infection of the eye activated a plethora of ocular cytokines and chemokines with profound relevance to inflammation of the eye. Anticytokine treatments in the eye reduced ocular inflammation but had no effect on viral growth in both eye and lung, demonstrating a role of the cytokine response in ocular pathology. These results establish the eye as a major gateway of respiratory infection and a respiratory virus as a bona fide eye pathogen, thus offering novel intervention and treatment options.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Conjunctivitis, Viral/therapy
- Conjunctivitis, Viral/transmission
- Conjunctivitis, Viral/virology
- Disease Models, Animal
- Eye/immunology
- Eye/virology
- Female
- Humans
- Interleukin-1alpha/immunology
- Lung/immunology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Respiratory Syncytial Virus Infections/therapy
- Respiratory Syncytial Virus Infections/transmission
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/metabolism
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Respiratory Tract Infections/therapy
- Respiratory Tract Infections/virology
- Treatment Outcome
- Tumor Necrosis Factor-alpha/immunology
- Virus Replication
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | |
Collapse
|
48
|
Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J. RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 2006; 80:5951-7. [PMID: 16731933 PMCID: PMC1472597 DOI: 10.1128/jvi.02453-05] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent.
Collapse
Affiliation(s)
- Thorsten Reuter
- Institut für Virologie und Immunbiologie, Julius Maximilians Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
49
|
Unwalla HJ, Rossi JJ. RNA interference as a potential antiviral. Future Virol 2006. [DOI: 10.2217/17460794.1.4.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small interfering RNAs have been used to silence the expression of mRNAs containing homologous sequences by a phenomenon termed RNA interference (RNAi); this is a highly conserved, ubiquitous, endogenous mechanism that uses small RNAs to silence gene expression post-transcriptionally. Numerous studies have demonstrated the utility of small interfering RNA for silencing genes either for target validation or for therapeutic applications, ranging from cancer to viral infections. Although most proof-of-concept experiments have succeeded in demonstrating the efficacy of these antivirals, reports of off-target effects have raised flags of caution and prompted researchers to design approaches to mitigate this problem by careful bioinformatic screening of potential off targets, targeted tissue delivery or conditional expression systems. This review focusses on the recent advantages and potential challenges to employing RNAi for viral gene therapy and how viruses have evolved to evade this antiviral mechanism.
Collapse
Affiliation(s)
- Hoshang J Unwalla
- Beckman Research Institute of The City of Hope, Division of Molecular Biology, Duarte, CA 91010, USA
| | - John J Rossi
- Beckman Research Institute of The City of Hope, Division of Molecular Biology, Duarte, CA 91010, USA
| |
Collapse
|
50
|
Abstract
The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.
Collapse
Affiliation(s)
- J N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| |
Collapse
|