1
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Manzoor S, Nabi SU, Baranwal VK, Verma MK, Parveen S, Rather TR, Raja WH, Shafi M. Overview on century progress in research on mosaic disease of apple (Malus domestica Borkh) incited by apple mosaic virus/apple necrotic mosaic virus. Virology 2023; 587:109846. [PMID: 37586234 DOI: 10.1016/j.virol.2023.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Apple mosaic is widely distributed disease throughout the apple growing regions leading to the major adverse effects both qualitatively and quantitatively. Earlier the apple mosaic virus-ApMV was regarded as the only causal agent of the disease, but recently a novel virus apple necrotic mosaic virus-ApNMV have been reported as the causal pathogen from various apple growing countries. Accurate diagnosis of disease and detection of ApMV and ApNMV are of utmost importance, because without this ability we can neither understand nor control this disease. Both the viruses are mostly controlled through quarantine, isolation, sanitation and certification programs depending on sensitive and specific detection methods available. Here we review the 100-year progress in research on apple mosaic disease, which includes history, yield losses, causal agents, their genome organization, replication, traditional to recent detection methods, transmission, distribution and host range of associated viruses and management of the disease.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India.
| | | | - Mahendra K Verma
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Shugufta Parveen
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Tariq Rasool Rather
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025, India
| | - Wasim H Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Mansoor Shafi
- Department of Plant Resources and Environment, Jeju National University, Jeju-si, 63243, Republic of Korea
| |
Collapse
|
3
|
Characterization of distinct strains of an aphid-transmitted ilarvirus (Fam. Bromoviridae) infecting different hosts from South America. Virus Res 2020; 282:197944. [PMID: 32222379 PMCID: PMC7221344 DOI: 10.1016/j.virusres.2020.197944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/08/2020] [Accepted: 03/21/2020] [Indexed: 11/22/2022]
Abstract
Thirteen complete genomes and 25 partial sequences of PYV from potato and yacon collected in Ecuador, Peru, Bolivia and a UK interception. Analysis suggests potato isolates originated via acquisition of the movement protein from a related virus through recombination. Most yacon isolates and potato isolates from Peru and Ecuador could be distinguished through infectivity and symptoms in different hosts.
Potato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK. These isolates were identified using high throughput sequencing, ELISA, host range and RT-PCR. Here we report the sequence characterization of the complete genomes of nine PYV isolates found infecting Solanum tuberosum, four complete genome isolates infecting Smallanthus sonchifolius (yacon), and in addition 15 complete RNA3 sequences from potato and partial sequences of RNA1, 2 and 3 of isolates infecting potato and yacon from Ecuador, Peru and Bolivia. Results of phylogenetic and recombination analysis showed RNA3 to be the most variable among the virus isolates and suggest potato infecting isolates have resulted through acquisition of a movement protein variant through recombination with an unknown but related ilarvirus, whereas one yacon isolate from Bolivia also had resulted from a recombination event with another related viruses in the same region. Yacon isolates could be distinguished from potato isolates by their inability to infect Physalis floridana, and potato isolates from Ecuador and Peru could be distinguished by their symptomatology in this host as well as phylogenetically. The non-recombinant yacon isolates were closely related to a recently described isolate from Solanum muricatum (pepino dulce), and all isolates were related to Fragaria chiloensis latent virus (FCiLV) reported in strawberry from Chile, and probably should be considered the same species. Although PYV is not serologically related to Alfalfa mosaic virus (AMV), they are both transmitted by aphids and share several other characteristics that support the previous suggestion to reclassify AMV as a member in the genus Ilarvirus.
Collapse
|
4
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses of Fragaria L. EFSA J 2019; 17:e05766. [PMID: 32626424 PMCID: PMC7009162 DOI: 10.2903/j.efsa.2019.5766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of Fragaria L. determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of strawberry latent virus and strawberry latent C virus for which very limited information exists, the pest categorisation was completed for 12 viruses having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for entry. Depending on the virus, additional pathway(s) can also be Fragaria seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Strawberry chlorotic fleck-associated virus, strawberry leaf curl virus, strawberry necrotic shock virus, strawberry pallidosis-associated virus, strawberry vein banding virus (SVBV) and tomato ringspot virus meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). For SVBV, the Panel considered that following its entry and establishment into the EU territory, an impact of uncertain magnitude is expected mainly because a synergistic effect may occur in strawberry in case of mixed infections with viruses already present in the EU . Strawberry crinivirus 3, strawberry crinivirus 4 and strawberry polerovirus 1 meet all criteria for being considered as potential Union QPs, except for the impact in the EU territory, on which the Panel was unable to conclude. Fragaria chiloensis cryptic virus, Fragaria chiloensis latent virus and strawberry pseudo mild yellow edge virus do not meet the criterion of having potential negative impact in the EU. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact. Since this opinion addresses specifically the non-EU viruses, in general, these viruses do not meet the criteria assessed by EFSA to qualify as potential Union regulated non-quarantine pests.
Collapse
|
5
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
6
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus. Front Microbiol 2017; 8:1219. [PMID: 28713347 PMCID: PMC5491605 DOI: 10.3389/fmicb.2017.01219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023] Open
Abstract
The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Fiona E. Constable
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Narelle Nancarrow
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Brendan Rodoni
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
7
|
MacFarlane S, McGavin W, Tzanetakis I. Virus testing by PCR and RT-PCR amplification in berry fruit. Methods Mol Biol 2015; 1302:227-248. [PMID: 25981258 DOI: 10.1007/978-1-4939-2620-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Berry fruit crops are prone to infection by a wide range of viruses, with the list expanding every year, primarily because of the expansion of the crops to new geographic regions. Although some methods allow for virus detection in a nonspecific manner, the advent of cheap and effective nucleic acid sequencing technologies has allowed for the development of species-specific tests. This chapter describes methods for extraction of nucleic acids for molecular testing from a range of different berry fruit crops and lists oligonucleotide primers that have been developed for amplification of a large number of berry fruit viruses.
Collapse
Affiliation(s)
- Stuart MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK,
| | | | | |
Collapse
|
8
|
Martin RR, Tzanetakis IE. High Risk Strawberry Viruses by Region in the United States and Canada: Implications for Certification, Nurseries, and Fruit Production. PLANT DISEASE 2013; 97:1358-1362. [PMID: 30722134 DOI: 10.1094/pdis-09-12-0842-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is limited information about the distribution of strawberry viruses in North America and around the world. Since the turn of the century, there has been a concerted effort to develop sensitive tests for many of the previously uncharacterized, graft-transmissible agents infecting strawberry. These tests were employed to determine the presence of strawberry viruses in major strawberry production and nursery areas of North America. The viruses evaluated in this study were Apple mosaic, Beet pseudo-yellows, Fragaria chiloensis latent, Strawberry chlorotic fleck, Strawberry crinkle, Strawberry latent ring spot, Strawberry mild yellow edge, Strawberry mottle, Strawberry necrotic shock, Strawberry pallidosis, Strawberry vein banding, and Tobacco streak. The aphid-borne viruses were predominant in the Pacific Northwest whereas the whitefly-borne viruses were prevalent in California, the Midwest, and the Southeast. In the Northeast, the aphid-transmitted Strawberry mottle and Strawberry mild yellow edge viruses along with the whitefly-transmitted viruses were most common. The incidence of pollen-borne viruses was low in most areas, with Strawberry necrotic shock being the most prevalent virus of this group. These results indicate that there are hotspots for individual virus groups that normally coincide with the presence of the vectors. The information presented highlights the high-risk viruses for nursery production, where efforts are made to control all viruses, and fruit production, where efforts are made to control virus diseases.
Collapse
Affiliation(s)
- Robert R Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Ioannis E Tzanetakis
- Department of Plant Pathology and Cell and Molecular Biology Program, Division of Agriculture, University of Arkansas, Fayetteville 72701
| |
Collapse
|
9
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
10
|
Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA. Ilarviruses of Prunus spp.: a continued concern for fruit trees. PHYTOPATHOLOGY 2012; 102:1108-1120. [PMID: 23148725 DOI: 10.1094/phyto-02-12-0023-rvw] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.
Collapse
Affiliation(s)
- V Pallas
- Instituto de Biologia Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Genomic sequences of blackberry chlorotic ringspot virus and strawberry necrotic shock virus and the phylogeny of viruses in subgroup 1 of the genus Ilarvirus. Arch Virol 2010; 155:557-61. [DOI: 10.1007/s00705-010-0601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
|
12
|
Untiveros M, Perez-Egusquiza Z, Clover G. PCR assays for the detection of members of the genus Ilarvirus and family Bromoviridae. J Virol Methods 2010; 165:97-104. [PMID: 20117141 DOI: 10.1016/j.jviromet.2010.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/12/2010] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
Abstract
A PCR assay was developed for the universal detection of ilarviruses using primers designed to the RNA-dependent RNA polymerase gene in RNA2. The assay detected 32 isolates of 15 definite and 2 tentative ilarvirus species using a one-step RT-PCR. The assay was more specific, and at least as sensitive as a commercial assay, and allowed direct sequencing of amplicons. No cross-reaction was observed with neither healthy plants of 15 host species nor from isolates in other genera of the Bromoviridae. A further PCR assay targeting the helicase motif of RNA1 was able to detect all species tested within the family Bromoviridae, including members of the Alfamovirus, Anulavirus, Bromovirus, Cucumovirus and Ilarvirus. The assays provide a sensitive and cost-effective way for detecting and characterising members of the Bromoviridae and can be used for quarantine and certification programmes.
Collapse
Affiliation(s)
- Milton Untiveros
- Plant Health and Environment Laboratory, Investigation and Diagnostic Centre, MAF Biosecurity New Zealand, PO Box 2095, Auckland 1140, New Zealand
| | | | | |
Collapse
|
13
|
Tuomivirta TT, Kaitera J, Hantula J. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol 2009; 90:2299-305. [PMID: 19494051 DOI: 10.1099/vir.0.011973-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ascospore and mycelial isolates of Gremmeniella abietina type B were found to contain three different dsRNA molecules with approximate lengths of 11, 5 and 3 kb. The 11 kb dsRNA encoded the genome of a putative virus and is named Gremmeniella abietina type B RNA virus XL (GaBRV-XL). GaBRV-XL probably exists in an unencapsulated state. We identified two distinct dsRNAs (10 374 and 10 375 bp) of GaBRV-XL, both of which coded for the same putative polyprotein (3249 amino acids) and contained four regions similar to putative viral methyltransferases, DExH box helicases, viral RNA helicase 1 and RNA-dependent RNA polymerases. While a cysteine-rich region with several CxCC motifs in GaBRV-XL was similar to that of putative endornaviruses, cluster analyses of conserved regions revealed GaBRV-XL to be distinct from a broad range of viral taxa but most closely related to Discula destructiva virus 3. Collectively, these findings suggest that GaBRV-XL represents a novel virus group related to endornaviruses.
Collapse
Affiliation(s)
- Tero T Tuomivirta
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, PO Box 18, FI-01301 Vantaa, Finland.
| | | | | |
Collapse
|
14
|
Boulila M. Recombination structure and genetic relatedness among members of the family Bromoviridae based on their RNAs 1 and 2 sequence analyses. Virus Genes 2009; 38:435-44. [DOI: 10.1007/s11262-009-0340-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 12/01/2022]
|
15
|
Scott SW, Zimmerman MT. Partial nucleotide sequences of the RNA 1 and RNA 2 of lilac ring mottle virus confirm that this virus should be considered a member of subgroup 2 of the genus Ilarvirus. Arch Virol 2008; 153:2169-72. [DOI: 10.1007/s00705-008-0233-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
|
16
|
A new method for extraction of double-stranded RNA from plants. J Virol Methods 2008; 149:167-70. [PMID: 18313147 DOI: 10.1016/j.jviromet.2008.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/10/2008] [Accepted: 01/16/2008] [Indexed: 11/25/2022]
Abstract
The occurrence of high molecular weight double-stranded RNA (dsRNA) in plants is associated with the presence of RNA viruses. DsRNA is stable, can be extracted easily from the majority of plant species and provides an excellent tool for characterization of novel viruses that are recalcitrant to purification. Several protocols have been developed for dsRNA purification, the majority of which are based on extraction with phenol and chloroform. We have developed a protocol for dsRNA extraction based on a lithium salts buffer that does not require organic solvents other than alcohols. The method yields comparable amount of dsRNA to protocols described previously and yields consistently dsRNA from Vaccinium hosts that have been recalcitrant to dsRNA purification using traditional protocols. The quality of the dsRNA purified is such that it can be used for downstream enzymatic reactions including reverse transcription-polymerase chain reaction and cloning.
Collapse
|
17
|
Susaimuthu J, Tzanetakis IE, Gergerich RC, Martin RR. A member of a new genus in the Potyviridae infects Rubus. Virus Res 2008; 131:145-51. [DOI: 10.1016/j.virusres.2007.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/30/2007] [Accepted: 09/01/2007] [Indexed: 11/16/2022]
|
18
|
Tzanetakis IE, Price R, Martin RR. Nucleotide sequence of the tripartite Fragaria chiloensis cryptic virus and presence of the virus in the Americas. Virus Genes 2007; 36:267-72. [DOI: 10.1007/s11262-007-0186-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/05/2007] [Indexed: 12/01/2022]
|
19
|
Complete nucleotide sequence of an isolate of coleus vein necrosis virus from verbena. Arch Virol 2007; 153:381-4. [PMID: 18094923 DOI: 10.1007/s00705-007-1068-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
20
|
Maliogka VI, Dovas CI, Katis NI. Demarcation of ilarviruses based on the phylogeny of RNA2-encoded RdRp and a generic ramped annealing RT-PCR. Arch Virol 2007; 152:1687-98. [PMID: 17541699 DOI: 10.1007/s00705-007-0995-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
In this study, a generic ramped-annealing (RAN) nested RT-PCR was developed, allowing the simultaneous detection and fast characterization of ilarviruses. The method involves a one-step RT-PCR in which a pair of degenerate primers amplifies a 381-bp part of the polymerase gene (RNA2), followed by a nested PCR amplification that increases detection sensitivity. The sensitivity and detection range of the method were further increased by applying a ramped annealing thermocycling step both in the first RT-PCR and in the subsequent nested PCR. The 371-bp nested amplicons can be sequenced directly, without cloning, to obtain initial sequence information on ilarvirus genomes, or can undergo a restriction enzyme analysis for rapid identification of already known virus species. Phylogenetic relationships among different members of the family Bromoviridae were inferred with maximum likelihood and Bayesian analysis, using published homologous partial amino acid sequences corresponding to the nested amplicon and also to a longer residue data set (432-453 aa) comprising all possible positions of homology among the RNA2-encoded polymerases of members of the family Bromoviridae. The implications of these analyses on the taxonomy of ilarviruses are discussed. The specific partial polymerase sequence, corresponding to the polymerase core palm structure (motifs A-D), was verified as phylogenetically informative and can be used to separate ilarviruses from other members of the family Bromoviridae, providing initial information for ilarvirus species characterization. However, the phylogenetic signal of this region is not reliable for inferring relationships among distantly related ilarviruses.
Collapse
Affiliation(s)
- V I Maliogka
- Plant Pathology Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
21
|
Tzanetakis IE, Martin RR. Strawberry chlorotic fleck: identification and characterization of a novel Closterovirus associated with the disease. Virus Res 2006; 124:88-94. [PMID: 17109984 DOI: 10.1016/j.virusres.2006.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/10/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Chlorotic fleck, a strawberry disease caused by a graft and aphid transmissible agent, was identified more than 45 years ago in Louisiana. Since its discovery there has been no additional information on the agent that causes the disease. The mode of transmission implies that a virus is the causal agent of chlorotic fleck. We identified four closteroviruses in the single chlorotic fleck infected strawberry clone known to exist in the United States. Sequence analysis indicated that two of the viruses are novel and one of them is closely related to members of the Closterovirus genus, the aphid-transmitted viruses in the family Closteroviridae, a feature that is in accordance with the aphid transmissibility of the chlorotic fleck agent. The genome of the novel Closterovirus, designated as Strawberry chlorotic fleck associated virus exceeds 17 kilobases and encodes 10 open reading frames, including the signature closterovirus genes as well as a gene without obvious homologs in the family. RNA folding predicted a pseudoknot structure near the 3' terminus of the virus that may be involved in template recognition by the viral polymerase. Phylogenetic analysis indicates that Strawberry chlorotic fleck associated virus is most closely related to Citrus tristeza virus among sequenced members of the family. Detection protocols have been developed and the virus was detected in several strawberry plants from production fields.
Collapse
Affiliation(s)
- Ioannis E Tzanetakis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
22
|
Martin RR, Tzanetakis IE. Characterization and Recent Advances in Detection of Strawberry Viruses. PLANT DISEASE 2006; 90:384-396. [PMID: 30786583 DOI: 10.1094/pd-90-0384] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR and Oregon State University, Corvallis
| | - Ioannis E Tzanetakis
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR and Oregon State University, Corvallis
| |
Collapse
|
23
|
Tzanetakis IE, Postman JD, Martin RR. Mint virus X: a novel potexvirus associated with symptoms in ‘Variegata’ mint. Arch Virol 2005; 151:143-53. [PMID: 16096710 DOI: 10.1007/s00705-005-0586-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Mentha x gracilis 'Variegata', an ornamental mint clone first described about 200 years ago, exhibits virus-like vein banding symptoms. Double-stranded RNA and virion isolations revealed the presence of three viruses in a 'Variegata' plant. Cloning and sequencing disclosed that one of the viruses was a previously unidentified species with similarities to members of the Flexiviridae family, designated as Mint virus X (MVX). The complete nucleotide sequence of the virus was determined. Phylogenetic analysis divulged the close relationship of the virus with lily virus X and strawberry mild yellow edge virus, members of the Potexvirus genus. A reverse transcription-polymerase chain reaction protocol was developed and used for detection of MVX in other 'Variegata' plants. All clones tested, obtained from nurseries around the United States were infected with MVX, making the virus a possible causal agent of the variegated symptoms.
Collapse
Affiliation(s)
- I E Tzanetakis
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97330, USA.
| | | | | |
Collapse
|