1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
3
|
Bebelman MP, Setiawan IM, Bergkamp ND, van Senten JR, Crudden C, Bebelman JPM, Verweij FJ, van Niel G, Siderius M, Pegtel DM, Smit MJ. Exosomal release of the virus-encoded chemokine receptor US28 contributes to chemokine scavenging. iScience 2023; 26:107412. [PMID: 37575190 PMCID: PMC10415803 DOI: 10.1016/j.isci.2023.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 contributes to various aspects of the viral life cycle and promotes immune evasion by scavenging chemokines from the microenvironment of HCMV-infected cells. In contrast to the plasma membrane localization of most human chemokine receptors, US28 has a predominant intracellular localization. In this study, we used immunofluorescence and electron microscopy to determine the localization of US28 upon exogenous expression, as well as in HCMV-infected cells. We observed that US28 localizes to late endosomal compartments called multivesicular bodies (MVBs), where it is sorted in intraluminal vesicles. Live-cell total internal reflection fluorescence (TIRF) microscopy revealed that US28-containing MVBs can fuse with the plasma membrane, resulting in the secretion of US28 on exosomes. Exosomal US28 binds the chemokines CX3CL1 and CCL5, and US28-containing exosomes inhibited the CX3CL1-CX3CR1 signaling axis. These findings suggest that exosomal release of US28 contributes to chemokine scavenging and immune evasion by HCMV.
Collapse
Affiliation(s)
- Maarten P. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Irfan M. Setiawan
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Nick D. Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jeffrey R. van Senten
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Caitrin Crudden
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Jan Paul M. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Frederik J. Verweij
- Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 Université de Paris, Paris, France
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - D. Michiel Pegtel
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Martine J. Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
4
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
5
|
Paradowska E, Jabłońska A, Studzińska M, Wilczyński M, Wilczyński JR. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci Rep 2019; 9:19935. [PMID: 31882737 PMCID: PMC6934444 DOI: 10.1038/s41598-019-56448-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Viral and bacterial infections are detected in epithelial ovarian cancer (EOC) tissues. Since the fallopian tubes are often affected by pelvic inflammatory disease (PID) and the majority of serous EOCs appear to originate from dysplastic lesions in the distal tube, it is relevant to consider the potential role that infectious agents may play in ovarian carcinogenesis. We sought to analyze the prevalence of human papillomavirus (HPV) and cytomegalovirus (CMV) in EOC tissue and fallopian tube specimens obtained at tumor resection. Ovarian cancer and fallopian tube tissue samples obtained from patients with EOC were analyzed by both qualitative and quantitative PCR to detect and quantify viral DNA. The presence of CMV and HPV DNA was detected in 70% and 74% cancerous ovarian tissues, respectively, and was significantly higher in EOC than in benign tumor cases (P ≤ 0.01). CMV or HPV infection was observed also in the fallopian tube samples. Infection with HPV16 was determined in 70% of EOC cases. Almost two thirds of EOC patients demonstrated coinfection with CMV and HPV in the pathological samples. The results revealed that the presence of CMV and HPV in EOC samples is common. CMV and HPV infections can be potential risks for EOC development.
Collapse
Affiliation(s)
- Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland.
| | - Agnieszka Jabłońska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| | - Mirosława Studzińska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Oncological Gynecology, Polish Mother's Health Center Research Institute, Lodz, Poland
| | - Jacek R Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Frank T, Niemann I, Reichel A, Stamminger T. Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection. Med Microbiol Immunol 2019; 208:447-456. [PMID: 30900091 DOI: 10.1007/s00430-019-00595-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
Abstract
Cytomegaloviruses (CMVs) have developed multiple diverse strategies to ensure their replicative success and to evade immune recognition. Given the fact that G protein-coupled receptors (GPCRs) are key regulators of numerous cellular processes and modify a variety of signaling pathways, it is not surprising that CMVs and other herpesviruses have hijacked mammalian GPCRs during their coevolution. Human cytomegalovirus (HCMV) encodes for four viral GPCR homologues (vGPCRs), termed US27, US28, UL33, and UL78. Although HCMV-encoded GPCRs were first described in 1990, the pivotal functions of these viral receptor proteins were detected only recently. Here, we summarize seminal knowledge on the functions of herpesviral vGPCRs with a focus on novel roles of cytomegalovirus-encoded vGPCRs for viral spread and the regulation of latency.
Collapse
Affiliation(s)
- Theresa Frank
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ina Niemann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Reichel
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Thomas Stamminger
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci U S A 2019; 116:1755-1764. [PMID: 30647114 DOI: 10.1073/pnas.1816933116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that undergoes latency in cells of the hematopoietic compartment, although the mechanisms underlying establishment and maintenance of latency remain elusive. We previously reported that the HCMV-encoded G protein-coupled receptor (GPCR) homolog US28 is required for successful latent infection. We now show that US28 protein (pUS28) provided in trans complements the US28Δ lytic phenotype in myeloid cells, suggesting that sustained US28 expression is necessary for long-term latency. Furthermore, expression of pUS28 at the time of infection represses transcription from the major immediate early promoter (MIEP) within 24 h. However, this repression is only maintained in the presence of continual pUS28 expression provided in trans Our data also reveal that pUS28-mediated signaling attenuates both expression and phosphorylation of cellular fos (c-fos), an AP-1 transcription factor subunit, to repress MIEP-driven transcription. AP-1 binds to the MIEP and promotes lytic replication, and in line with this we find that US28Δ infection results in an increase in AP-1 binding to the MIEP, compared with WT latent infection. Pharmacological inhibition of c-fos represses the MIEP during US28Δ infection to levels similar to those we observe during WT latent infection. Together, our data reveal that US28 is required for both establishment and long-term maintenance of HCMV latency, which is modulated, at least in part, by repressing functional AP-1 binding to the MIEP.
Collapse
|
9
|
Who's Driving? Human Cytomegalovirus, Interferon, and NFκB Signaling. Viruses 2018; 10:v10090447. [PMID: 30134546 PMCID: PMC6163874 DOI: 10.3390/v10090447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022] Open
Abstract
As essential components of the host's innate immune response, NFκB and interferon signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the signaling of these pathways. Here we review the biology of the HCMV factors that alter NFκB and interferon signaling, including what is currently known about how these viral genes contribute to infection and persistence, as well as the major outstanding questions that remain.
Collapse
|
10
|
Krishna BA, Miller WE, O'Connor CM. US28: HCMV's Swiss Army Knife. Viruses 2018; 10:E445. [PMID: 30127279 PMCID: PMC6116241 DOI: 10.3390/v10080445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. Molecular Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation. Viruses 2018; 10:E444. [PMID: 30127257 PMCID: PMC6116278 DOI: 10.3390/v10080444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Collapse
Affiliation(s)
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
12
|
Human Cytomegalovirus Encodes a Novel FLT3 Receptor Ligand Necessary for Hematopoietic Cell Differentiation and Viral Reactivation. mBio 2018; 9:mBio.00682-18. [PMID: 29691342 PMCID: PMC5915732 DOI: 10.1128/mbio.00682-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.
Collapse
|
13
|
Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection. mBio 2017; 8:mBio.01754-17. [PMID: 29208743 PMCID: PMC5717388 DOI: 10.1128/mbio.01754-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.
Collapse
|
14
|
Stegman JR, Margulies BJ. The human cytomegalovirus chemokine receptor homolog encoded by US27. Virus Genes 2017; 53:516-521. [DOI: 10.1007/s11262-017-1462-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
|
15
|
Human Cytomegalovirus MicroRNAs miR-US5-1 and miR-UL112-3p Block Proinflammatory Cytokine Production in Response to NF-κB-Activating Factors through Direct Downregulation of IKKα and IKKβ. mBio 2017; 8:mBio.00109-17. [PMID: 28270578 PMCID: PMC5340867 DOI: 10.1128/mbio.00109-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that human cytomegalovirus (HCMV) manipulates host cell signaling pathways using both proteins and noncoding RNAs. Several studies have shown that HCMV induces NF-κB signaling early in infection, resulting in the induction of antiviral proinflammatory cytokines with a subsequent reduction of these cytokines late in infection. The mechanism for late cytokine reduction is unknown. In this study, we show that HCMV microRNAs (miRNAs) miR-US5-1 and miR-UL112-3p target the IκB kinase (IKK) complex components IKKα and IKKβ to limit production of proinflammatory cytokines in response to interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α). Transfection of miR-UL112-3p and miR-US5-1 mimics reduced endogenous IKKα and IKKβ protein levels, and site-directed mutagenesis of the 3' untranslated regions (UTRs) identified the binding sites for each miRNA. Infection with mutant viruses lacking these miRNAs resulted in increased levels of IKKα and IKKβ proteins, an impaired ability to control NF-κB signaling at late times of lytic infection, and increased production of proinflammatory cytokines compared to wild-type virus in cell types relevant to HCMV infection in vivo These phenotypes were rescued by preexpression of miR-US5-1 and miR-UL112-3p in infected cells or by a miR-US5-1/miR-UL112-3p double mutant virus that expresses short hairpin RNAs (shRNAs) targeting IKKα and IKKβ, demonstrating the gene specificity of the miRNAs. These observations describe a mechanism through which HCMV miRNAs expressed late in the infectious cycle downregulate proinflammatory cytokine production to create a cellular proviral environment.IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in transplant recipients and causes hearing loss and mental retardation when acquired congenitally. Initial events during HCMV infection result in the activation of NF-κB signaling, which culminates in the production of IL-6, CCL5, and TNF-α. Several viruses have developed mechanisms to block the antiviral effects of these cytokines. We show here that two HCMV miRNAs, miR-US5-1 and miR-UL112-3p, specifically downregulate IKKα and IKKβ signaling factors necessary to propagate NF-κB signaling and subsequent IL-6, CCL5, and TNF-α production. Regulation of these proinflammatory cytokines during lytic infection and during latency is critical to viral survival in the host.
Collapse
|
16
|
Frank T, Reichel A, Larsen O, Stilp AC, Rosenkilde MM, Stamminger T, Ozawa T, Tschammer N. Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28. Cell Commun Signal 2016; 14:31. [PMID: 27955674 PMCID: PMC5153698 DOI: 10.1186/s12964-016-0154-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/02/2016] [Indexed: 01/08/2023] Open
Abstract
Background Some herpesviruses like human cytomegalovirus (HCMV) encode viral G protein-coupled receptors that cause reprogramming of cell signaling to facilitate dissemination of the virus, prevent immune surveillance and establish life-long latency. Human GPCRs are known to function in complex signaling networks involving direct physical interactions as well as indirect crosstalk of orthogonal signaling networks. The human chemokine receptor CXCR4 is expressed on hematopoietic stem cells, leukocytes, endothelial and epithelial cells, which are infected by HCMV or display reservoirs of latency. Results We investigated the potential heteromerization of US28 with CXCR4 as well as the influence of US28 on CXCR4 signaling. Using Bioluminescence Resonance Energy Transfer and luciferase-complementation based methods we show that US28 expression exhibits negative effects on CXCR4 signaling and constitutive surface expression in HEK293T cells. Furthermore, we demonstrate that this effect is not mediated by receptor heteromerization but via signaling crosstalk. Additionally, we show that in HCMV, strain TB40E, infected HUVEC the surface expression of CXCR4 is strongly downregulated, whereas in TB40E-delUS28 infected cells, CXCR4 surface expression is not altered in particular at late time points of infection. Conclusions We show that the vGPCR US28 is leading to severely disturbed signaling and surface expression of the chemokine receptor CXCR4 thereby representing an effective mechanism used by vGPCRs to reprogram host cell signaling. In contrast to other studies, we demonstrate that these effects are not mediated via heteromerization. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0154-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Frank
- Department of Chemistry and Pharmacy, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany.,Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Reichel
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Olav Larsen
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Charlotte Stilp
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mette M Rosenkilde
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany. .,Present Address: NanoTemper Technologies GmbH, Floessergasse 4, 81069, Munich, Germany.
| |
Collapse
|
17
|
Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene. PLoS One 2015; 10:e0117773. [PMID: 25658598 PMCID: PMC4320089 DOI: 10.1371/journal.pone.0117773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) interleukin-10 (hcmvIL-10), encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1) plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR) of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies.
Collapse
|
18
|
Mølleskov-Jensen AS, Oliveira MT, Farrell HE, Davis-Poynter N. Virus-Encoded 7 Transmembrane Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:353-93. [DOI: 10.1016/bs.pmbts.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Abstract
All of the cytomegaloviruses discovered to date encode two or more genes with significant homology to G-protein coupled receptors (GPCRs). The functions of these cytomegalovirus GPCRs are just beginning to be elucidated; however, it is clear that they exhibit numerous interesting activities in both in vitro and in vivo systems. In this chapter, we review the various methodologies that can be used to examine biochemical aspects of viral GPCR signaling in vitro as well as examine the biological activity of these viral GPCRs in vitro and in vivo in virus infected cells using recombinant cytomegaloviruses.
Collapse
Affiliation(s)
- Christine M O'Connor
- Section of Virology, Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | | |
Collapse
|
20
|
Sinclair JH, Reeves MB. Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5:2803-24. [PMID: 24284875 PMCID: PMC3856416 DOI: 10.3390/v5112803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV.
Collapse
Affiliation(s)
- John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK; E-Mail:
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)207-794-0500 (ext. 33109)
| |
Collapse
|
21
|
Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood 2012; 119:4908-18. [PMID: 22496149 DOI: 10.1182/blood-2011-08-372516] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes four 7-transmembrane-spanning (7TM) proteins, US28, US27, UL33, and UL78, which present important sequence homology with human chemokine receptors. Whereas US28 binds a large range of chemokines and disturbs host cell signaling at different levels, the others are orphans with largely unknown functions. Assembly of 2 different 7TM proteins into hetero-oligomeric complexes may profoundly change their respective functional properties. We show that HCMV-encoded UL33 and UL78 form heteromers with CCR5 and CXCR4 chemokine receptors in transfected human embryonic kidney 293T cells and monocytic THP-1 cells. Expression of UL33 and UL78 had pleiotropic, predominantly negative, effects on CCR5 and CXCR4 cell surface expression, ligand-induced internalization, signal transduction, and migration without modifying the chemokine binding properties of CCR5 and CXCR4. Importantly, the coreceptor activity of CCR5 and CXCR4 for HIV was largely impaired in the presence of UL33 and UL78 without affecting expression of the primary HIV entry receptor CD4 and its interaction with CCR5 and CXCR4. Collectively, we identified the first molecular function for the HCMV-encoded orphan UL33 and UL78 7TM proteins, namely the regulation of cellular chemokine receptors through receptor heteromerization.
Collapse
|
22
|
Paradowska E, Studzińska M, Nowakowska D, Wilczyński J, Rycel M, Suski P, Gaj Z, Kaczmarek B, Zbróg Z, Leśnikowski ZJ. Distribution of UL144, US28 and UL55 genotypes in Polish newborns with congenital cytomegalovirus infections. Eur J Clin Microbiol Infect Dis 2011; 31:1335-45. [PMID: 22048843 DOI: 10.1007/s10096-011-1447-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. HCMV strains display genetic variability in different regions. Distribution of HCMV genotypes in the population of congenitally infected newborns from Central Poland and viral load in newborns' blood is described and discussed. HCMV isolates were analysed by sequencing at three sites on the genome: the UL144 tumour necrosis factor-alpha (TNFα)-like receptor gene, the US28 beta-chemokine receptor gene and the UL55 envelope glycoprotein B (gB) gene. The newborns' blood was examined for HCMV DNA with a nested (UL144, UL55) or heminested (US28) polymerase chain reaction, and the genotypes were determined by sequence analysis. HCMV DNA was detectable in 25 out of 55 examined newborns born by HCMV-infected mothers (45.5%). The blood viral load in mother-infant pairs was determined. Most of the newborns had identical virus genotype, gB2 (96%), UL144 B1 (88%) and US28 A2 (84%). These genotypes were detected in all newborns with asymptomatic congenital infection. The occurrence of UL144 B1 or US28 A2 genotypes in the babies examined was significant in comparison to other genotypes (p=0.0002 and p=0.040 respectively). There was no association between specific gB subtypes in all patients groups (p=0.463). There was no correlation between HCMV genotypes and the outcome.
Collapse
Affiliation(s)
- E Paradowska
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, Lodowa 106, 93-232, Lodz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M. Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 2011; 82:610-9. [PMID: 21684267 PMCID: PMC3156895 DOI: 10.1016/j.bcp.2011.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that infects up to 80% of the human population and causes severe complications in immunocompromised patients. HCMV expresses four seven transmembrane (7TM) spanning/G protein-coupled receptors (GPCRs) – US28, US27, UL33 and UL78 – that show close homology to human chemokine receptors. While US28 was shown to bind several chemokines and to constitutively activate multiple signaling cascades, the function(s) of US27, UL33 and UL78 in the viral life cycle have not yet been identified. Here we investigated the possible interaction/heteromerization of US27, UL33 and UL78 with US28 and the functional consequences thereof. We provide evidence that these receptors not only co-localize, but also heteromerize with US28 in vitro. While the constitutive activation of the US28-mediated Gαq/phospholipase C pathway was not affected by receptor heteromerization, UL33 and UL78 were able to silence US28-mediated activation of the transcription factor NF-κB. Summarized, we provide evidence that these orphan viral receptors have an important regulatory capacity on the function of US28 and as a consequence, may ultimately impact on the viral life cycle of HCMV.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
24
|
Tan S, Liu S, Jiang S. Pathogenesis and treatment of human immunodeficiency virus-associated cytomegalovirus retinitis. Future Virol 2011. [DOI: 10.2217/fvl.11.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the era of HAART, human cytomegalovirus (HCMV) retinitis remains the leading opportunistic ocular infection and the major cause of blindness in patients with AIDS. The virus has been subjected to selection and presented with the opportunity to occupy a niche to which it is highly adapted in order to escape from host immune recognition and establish persistent infection in the retina. The imbalance between host immune protection and viral immune evasion results in retinitis progression. Moreover, a synergistic interaction between HCMV and HIV in the pathogenesis of retinitis has been proposed. HAART has had a major beneficial impact on the prognosis for HIV-infected individuals. Both HAART and specific anti-HCMV treatment contribute to therapeutic success against HCMV retinitis in AIDS patients. The improved prognosis for AIDS patients with respect to the development of HCMV retinitis has been welcomed; however, we should bear in mind the occurrence of HIV drug resistance, relapse of retinitis and immune recovery uveitis after treatment, which mean that this complication of HIV infection remains a threat.
Collapse
Affiliation(s)
- Suiyi Tan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Viral Immunology Laboratory, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shibo Jiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Viral Immunology Laboratory, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Key Laboratory of Medical Molecular Virology of MOE/MOH & Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Vomaske J, Nelson JA, Streblow DN. Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect Disord Drug Targets 2010; 9:548-56. [PMID: 19594424 DOI: 10.2174/187152609789105696] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/06/2009] [Indexed: 11/22/2022]
Abstract
Chemokines are small cytokines that are part of a large family of molecules that bind to G-protein coupled receptors, which, as a family, are the most widely targeted group of molecules in the treatment of disease. Chemokines are critical for recruiting and activating the cells of the immune system during inflammation especially during viral infections. However, a number of viruses including the large herpes virus human cytomegalovirus (HCMV) encode mechanisms to impede the effects of chemokines or has gained the ability to use these molecules to its own advantage. The Human Cytomegalovirus (HCMV)-encoded chemokine receptor US28 is the best characterized of the four unique chemokine receptor-like molecules found in the HCMV genome. US28 has been studied as an important virulence factor for HCMV-mediated vascular disease and, more recently, in models of HCMV-associated malignancy. US28 is a rare multi-chemokine family binding receptor with the ability to bind ligands from two distinct chemokine classes. Ligand binding to US28 activates cell-type and ligand-specific signaling pathways leading to cellular migration, which is an important example of receptor functional selectivity. Additionally, US28 has been demonstrated to constitutively activate phospholipase C (PLC) and NF-kB signaling pathways. Understanding the structure/function relationships between US28, its ligands and intracellular signaling molecules will provide essential clues for effective pharmacological targeting of this multifunctional chemokine receptor.
Collapse
Affiliation(s)
- Jennifer Vomaske
- Department of Molecular Microbiology and Immunology and The Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | | | | |
Collapse
|
26
|
Wen DQ, Zhang YY, Lv LP, Zhou XP, Yan F, Ma P, Xu JB. Human cytomegalovirus-encoded chemokine receptor homolog US28 stimulates the major immediate early gene promoter/enhancer via the induction of CREB. J Recept Signal Transduct Res 2009; 29:266-73. [PMID: 19772393 DOI: 10.1080/10799890903178141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The major immediate early (MIE) gene of cytomegalovirus plays a key role in determining the activation and replication of cytomegalovirus, which represents the most important event signaling the onset of virus-induced disease relapse. The viral-encoded chemokine receptor homolog US28 can constitutively activate many cellular transcription factors, which can bind to the promoter/enhancer of the MIE gene and activate its transcription. Using reporter gene assays in HEK293 cells, we found that US28 enhanced the transcription efficiency of MIE and other genes via cAMP response element-binding protein (CREB). Inhibition of CREB partially blocked the effect of US28, whereas forskolin enhanced this effect. There was a direct correlation between CREB and transcription of MIE gene. These data, together with the broad-spectrum effect of cellular transcription factors, suggest that US28 may be involved in the very early transcription of the host cell during virus activation.
Collapse
Affiliation(s)
- Dong-Qing Wen
- Beijing Institute of Transfusion Medicine, Beijing 100850, P R China
| | | | | | | | | | | | | |
Collapse
|
27
|
Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Galpha(q/11) and Galpha(16). Cell Signal 2008; 20:1528-37. [PMID: 18534820 DOI: 10.1016/j.cellsig.2008.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 04/11/2008] [Indexed: 01/30/2023]
Abstract
Expression of the human cytomegalovirus (HCMV)-encoded chemokine receptor homologue pUS28 in mammalian cells results in ligand-dependent and -independent changes in the activity of multiple cellular signal transduction pathways. The ligand-dependent signalling activity of pUS28 has been shown to be predominantly mediated by heterotrimeric G proteins of the G(i/o) and G(12/13) subfamilies. Ligand-independent constitutive activity of pUS28 causing stimulation of inositol phosphate formation has been correlated with the coupling of pUS28 to G proteins of the G(q) family. It is well known that activation of G(q) proteins by cell surface receptors is coupled to activation of the Rho GTPase RhoA. Activated RhoA regulates numerous cellular functions, including the activity of the transcription factor serum response factor (SRF). The marked activation of G(q) proteins by pUS28 in transfected and HCMV-infected cells prompted us to investigate its effect on SRF activity. The results presented herein demonstrate that expression of pUS28 in COS-7 cells caused a vigorous induction of SRF activity. This effect was observed in the absence of chemokines known to interact with pUS28, and was specifically mediated by endogenous G(q) and/or G(11) as well as RhoA and/or a closely related Rho GTPase. The stimulatory effect of pUS28 and Galpha(q/11) was independent of phospholipase C-beta (PLCbeta) activation and was markedly sensitive to inhibition by wild-type, but not by constitutively active Galpha(16), thus identifying Galpha(16) as a modulator of Galpha(q/11) function likely to act by competing with Galpha(q/11) for and thus uncoupling Galpha(q/11) from activation by pUS28.
Collapse
|
28
|
Beisser PS, Lavreysen H, Bruggeman CA, Vink C. Chemokines and chemokine receptors encoded by cytomegaloviruses. Curr Top Microbiol Immunol 2008; 325:221-42. [PMID: 18637509 DOI: 10.1007/978-3-540-77349-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CMVs carry several genes that are homologous to genes of the host organism. These include genes homologous to those encoding chemokines (CKs) and G protein-coupled receptors (GPCRs). It is generally assumed that these CMV genes were hijacked from the host genome during the long co-evolution of virus and host. In light of the important function of the CK and GPCR families in the normal physiology of the host, it has previously been hypothesized that the CMV homologs of these proteins, CMV vCKs and vGPCRs, may also have a significant impact on this physiology, such that lifelong maintenance and/or replication of the virus within the infected host is guaranteed. In addition, several of these homologs were reported to have a major impact in the pathogenesis of infection. In this review, the current state of knowledge on the CMV vCKs and vGPCRs will be discussed.
Collapse
Affiliation(s)
- P S Beisser
- Department of Medical Microbiology, Cardiovascular Research Institute Maastricht, University Hospital Maastricht, PO Box 5800, AZ, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
29
|
Dagna L, Lusso P. Virus-encoded chemokines, chemokine receptors and chemokine-binding proteins: new paradigms for future therapy. Future Virol 2007. [DOI: 10.2217/17460794.2.4.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over millions of years of coevolution with their hosts, viruses have learned the finest artifices of the immune system defense mechanisms and developed a variety of strategies for evading them. The chemokine system has been a primary target of these viral efforts because of the critical role it plays in the development of effective immune responses. Not only do chemokines control cellular recruitment at the site of infection, they also regulate the magnitude and character of the immune responses. Several viruses, and large DNA viruses in particular, have exploited the chemokine system by hijacking and reprogramming chemokine or chemokine-receptor genes, and/or secreting chemokine-binding proteins. In the past few years there has been intense investigation in this area, driven not only by the prospect of gaining a better understanding of viral-immune evasion mechanisms, but also by the possibility of targeting these molecules as part of future antiviral therapeutic approaches, as well as exploiting viral strategies of chemokine interference as novel therapies for inflammatory or neoplastic diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy, and, San Raffaele Scientific Institute, Unit of Human Virology, Department of Biological & Technological Research (DIBIT), 20132 Milan, Italy
| | - Paolo Lusso
- San Raffaele Scientific Institute, Unit of Human Virology, Department of Biological & Technological Research (DIBIT), 20132 Milan, Italy
| |
Collapse
|
30
|
Margulies BJ, Gibson W. The chemokine receptor homologue encoded by US27 of human cytomegalovirus is heavily glycosylated and is present in infected human foreskin fibroblasts and enveloped virus particles. Virus Res 2006; 123:57-71. [PMID: 16963142 PMCID: PMC2676329 DOI: 10.1016/j.virusres.2006.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 11/26/2022]
Abstract
Human cytomegalovirus (HCMV), a member of the beta-herpesvirus family, encodes four homologues of cellular G protein-coupled receptors (GPCRs). One of these, the protein product of HCMV open reading frame (ORF) UL33, has been identified in HCMV-infected cells and virus particles and shown to be heat-aggregatable and N-glycosylated. Another, the product of ORF US28, has been functionally characterized as a beta-chemokine receptor. Here we report the use of RT-PCR, coupled in vitro transcription-translation, immunoprecipitation, and Western immunoassays to (i) show that RNA from the open reading frame US27 appears predominantly during the late phase of replication; (ii) identify the protein encoded by HCMV US27 in infected cells and enveloped virus particles; (iii) demonstrate that the US27-encoded protein is heterogeneously N-glycosylated and resolves as two species following treatment with peptide N-glycosidase F; and (iv) show that both the recombinant and deglycoylated infected cell US27 protein aggregate when heated in the presence of SDS prior to electrophoresis in polyacrylamide gels, a property which is abrogated with the addition of urea to sample buffer.
Collapse
Affiliation(s)
- Barry J Margulies
- Towson University Herpes Virus Lab, Department of Biological Sciences, Towson University, Towson, MD 21252, USA.
| | | |
Collapse
|