1
|
Dominguez-Mirazo M, Harris JD, Demory D, Weitz JS. Accounting for cellular-level variation in lysis: implications for virus-host dynamics. mBio 2024; 15:e0137624. [PMID: 39028198 PMCID: PMC11323501 DOI: 10.1128/mbio.01376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Viral impacts on microbial populations depend on interaction phenotypes-including viral traits spanning the adsorption rate, latent period, and burst size. The latent period is a key viral trait in lytic infections. Defined as the time from viral adsorption to viral progeny release, the latent period of bacteriophage is conventionally inferred via one-step growth curves in which the accumulation of free virus is measured over time in a population of infected cells. Developed more than 80 years ago, one-step growth curves do not account for cellular-level variability in the timing of lysis, potentially biasing inference of viral traits. Here, we use nonlinear dynamical models to understand how individual-level variation of the latent period impacts virus-host dynamics. Our modeling approach shows that inference of the latent period via one-step growth curves is systematically biased-generating estimates of shorter latent periods than the underlying population-level mean. The bias arises because variability in lysis timing at the cellular level leads to a fraction of early burst events, which are interpreted, artefactually, as an earlier mean time of viral release. We develop a computational framework to estimate latent period variability from joint measurements of host and free virus populations. Our computational framework recovers both the mean and variance of the latent period within simulated infections including realistic measurement noise. This work suggests that reframing the latent period as a distribution to account for variability in the population will improve the study of viral traits and their role in shaping microbial populations.IMPORTANCEQuantifying viral traits-including the adsorption rate, burst size, and latent period-is critical to characterize viral infection dynamics and develop predictive models of viral impacts across scales from cells to ecosystems. Here, we revisit the gold standard of viral trait estimation-the one-step growth curve-to assess the extent to which assumptions at the core of viral infection dynamics lead to ongoing and systematic biases in inferences of viral traits. We show that latent period estimates obtained via one-step growth curves systematically underestimate the mean latent period and, in turn, overestimate the rate of viral killing at population scales. By explicitly incorporating trait variability into a dynamical inference framework that leverages both virus and host time series, we provide a practical route to improve estimates of the mean and variance of viral traits across diverse virus-microbe systems.
Collapse
Affiliation(s)
- Marian Dominguez-Mirazo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy D. Harris
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana, USA
| | - David Demory
- CNRS, Sorbonne Université, USR3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| |
Collapse
|
2
|
Ruiz Martínez E, Mckeown DA, Schroeder DC, Thuestad G, Sjøtun K, Sandaa RA, Larsen A, Hoell IA. Phaeoviruses Present in Cultured and Natural Kelp Species, Saccharina latissima and Laminaria hyperborea (Phaeophyceae, Laminariales) , in Norway. Viruses 2023; 15:2331. [PMID: 38140573 PMCID: PMC10747701 DOI: 10.3390/v15122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also from the Laminariales order. However, despite phaeoviral infections being reported globally, Norwegian kelp species have not been screened. A molecular analysis of cultured and wild samples of two economically important kelp species in Norway (Saccharina latissima and Laminaria hyperborea) revealed that phaeoviruses are recurrently present along the Norwegian coast. We found the viral prevalence in S. latissima to be significantly higher at the present time compared to four years ago. We also observed regional differences within older samples, in which infections were significantly lower in northern areas than in the south or the fjords. Moreover, up to three different viral sequences were found in the same algal individual, one of which does not belong to the Phaeovirus genus and has never been reported before. This master variant therefore represents a putative new member of an unclassified phycodnavirus genus.
Collapse
Affiliation(s)
- Eliana Ruiz Martínez
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, 5528 Haugesund, Norway; (G.T.); (I.A.H.)
| | - Dean A. Mckeown
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA; (D.A.M.); (D.C.S.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA; (D.A.M.); (D.C.S.)
| | - Gunnar Thuestad
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, 5528 Haugesund, Norway; (G.T.); (I.A.H.)
| | - Kjersti Sjøtun
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; (K.S.); (R.-A.S.)
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; (K.S.); (R.-A.S.)
| | - Aud Larsen
- NORCE Norwegian Research Centre, 5008 Bergen, Norway;
| | - Ingunn Alne Hoell
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, 5528 Haugesund, Norway; (G.T.); (I.A.H.)
| |
Collapse
|
3
|
Schroeder DC, Schoenrock KM, McHugh TA, Ray J, Krueger-Hadfield SA. Phaeoviruses found in recovering Nereocystis luetkeana kelp forest community. JOURNAL OF PHYCOLOGY 2023; 59:818-821. [PMID: 37547987 DOI: 10.1111/jpy.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Tristin Anoush McHugh
- Reef Check Foundation, Marina Del Rey, California, USA
- The Nature Conservancy, Sacramento, California, USA
| | - James Ray
- California Department of Fish and Wildlife, Coastal Conservation, Eureka, California, USA
| | | |
Collapse
|
4
|
Murúa P, Garvetto A, Egan S, Gachon CMM. The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:231-255. [PMID: 37253694 DOI: 10.1146/annurev-phyto-020620-120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile-Sede Puerto Montt, Los Lagos, Chile;
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Andrea Garvetto
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Tyrol, Austria
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
5
|
Wisecaver JH, Auber RP, Pendleton AL, Watervoort NF, Fallon TR, Riedling OL, Manning SR, Moore BS, Driscoll WW. Extreme genome diversity and cryptic speciation in a harmful algal-bloom-forming eukaryote. Curr Biol 2023; 33:2246-2259.e8. [PMID: 37224809 PMCID: PMC10247466 DOI: 10.1016/j.cub.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.
Collapse
Affiliation(s)
- Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA.
| | - Robert P Auber
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F Watervoort
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Timothy R Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Olivia L Riedling
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Schonna R Manning
- Department of Biological Sciences, Institute of Environment, Florida International University, 3000 NE 151st Street, MSB 250B, North Miami, FL 33181, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - William W Driscoll
- Department of Biology, Penn State Harrisburg, 777 W. Harrisburg Pike, Middletown, PA 17057, USA
| |
Collapse
|
6
|
Kim KE, Joo HM, Lee TK, Kim HJ, Kim YJ, Kim BK, Ha SY, Jung SW. Covariance of Marine Nucleocytoplasmic Large DNA Viruses with Eukaryotic Plankton Communities in the Sub-Arctic Kongsfjorden Ecosystem: A Metagenomic Analysis of Marine Microbial Ecosystems. Microorganisms 2023; 11:microorganisms11010169. [PMID: 36677461 PMCID: PMC9862967 DOI: 10.3390/microorganisms11010169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) infect various marine eukaryotes. However, little is known about NCLDV diversity and their relationships with eukaryotic hosts in marine environments, the elucidation of which will advance the current understanding of marine ecosystems. This study characterizes the interplay between NCLDVs and the eukaryotic plankton community (EPC) in the sub-Arctic area using metagenomics and metabarcoding to investigate NCLDVs and EPC, respectively, in the Kongsfjorden ecosystem of Svalbard (Norway) in April and June 2018. Gyrodinium helveticum (Dinophyceae) is the most prevalent eukaryotic taxon in the EPC in April, during which time Mimiviridae (31.8%), Poxviridae (25.1%), Phycodnaviridae (14.7%) and Pandoraviridae (13.1%) predominate. However, in June, the predominant taxon is Aureococcus anophagefferens (Pelagophyceae), and the NCLDVs, Poxviridae (32.9%), Mimiviridae (29.1%), and Phycodnaviridae (18.5%) appear in higher proportions with an increase in Pelagophyceae, Bacillariophyceae, and Chlorophyta groups. Thus, differences in NCLDVs may be caused by changes in EPC composition in response to environmental changes, such as increases in water temperature and light intensity. Taken together, these findings are particularly relevant considering the anticipated impact of NCLDV-induced EPC control mechanisms on polar regions and, therefore, improve the understanding of the Sub-Arctic Kongsfjorden ecosystem.
Collapse
Affiliation(s)
- Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyoung Min Joo
- Unit of Next Generation IBRV Building Program, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Bo Kyung Kim
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| |
Collapse
|
7
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|
8
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
9
|
Li YH, Hou HF, Geng Z, Zhang H, She Z, Dong YH. Structural basis of a multi-functional deaminase in chlorovirus PBCV-1. Arch Biochem Biophys 2022; 727:109339. [DOI: 10.1016/j.abb.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
10
|
Functional genomic analyses reveal an open pan-genome for the chloroviruses and a potential for genetic innovation in new isolates. J Virol 2021; 96:e0136721. [PMID: 34669449 DOI: 10.1128/jvi.01367-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses (family Phycodnaviridae) are large dsDNA viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. 368, 268 and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportion of functionally characterized COGs composing the pan- and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core-genome. Bipartite network construction evidencing the COG-sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core-genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. Importance Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.
Collapse
|
11
|
Mishra B, Manmode S, Walke G, Chakraborty S, Neralkar M, Hotha S. Synthesis of the hyper-branched core tetrasaccharide motif of chloroviruses. Org Biomol Chem 2021; 19:1315-1328. [PMID: 33459320 DOI: 10.1039/d0ob02176h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Sujit Manmode
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| |
Collapse
|
12
|
Chelkha N, Levasseur A, La Scola B, Colson P. Host-virus interactions and defense mechanisms for giant viruses. Ann N Y Acad Sci 2020; 1486:39-57. [PMID: 33090482 DOI: 10.1111/nyas.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/28/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022]
Abstract
Giant viruses, with virions larger than 200 nm and genomes larger than 340 kilobase pairs, modified the now outdated perception of the virosphere. With virions now reported reaching up to 1.5 μm in size and genomes of up to 2.5 Mb encoding components shared with cellular life forms, giant viruses exhibit a complexity similar to microbes, such as bacteria and archaea. Here, we review interactions of giant viruses with their hosts and defense strategies of giant viruses against their hosts and coinfecting microorganisms or virophages. We also searched by comparative genomics for homologies with proteins described or suspected to be involved in defense mechanisms. Our search reveals that natural immunity and apoptosis seem to be crucial components of the host defense against giant virus infection. Conversely, giant viruses possess methods of hijacking host functions to counteract cellular antiviral responses. In addition, giant viruses may encode other unique and complex pathways to manipulate the host machinery and eliminate other competing microorganisms. Notably, giant viruses have evolved defense mechanisms against their virophages and they might trigger defense systems against other viruses through sequence integration. We anticipate that comparative genomics may help identifying genes involved in defense strategies of both giant viruses and their hosts.
Collapse
Affiliation(s)
- Nisrine Chelkha
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Anthony Levasseur
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Yau S, Krasovec M, Benites LF, Rombauts S, Groussin M, Vancaester E, Aury JM, Derelle E, Desdevises Y, Escande ML, Grimsley N, Guy J, Moreau H, Sanchez-Brosseau S, van de Peer Y, Vandepoele K, Gourbiere S, Piganeau G. Virus-host coexistence in phytoplankton through the genomic lens. SCIENCE ADVANCES 2020; 6:eaay2587. [PMID: 32270031 PMCID: PMC7112755 DOI: 10.1126/sciadv.aay2587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 05/02/2023]
Abstract
Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Corresponding author. (G.P.); (S.Y.)
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - L. Felipe Benites
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Stephane Rombauts
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square NE47-378, Cambridge, MA 02139, USA
| | - Emmelien Vancaester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Julie Guy
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Yves van de Peer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sebastien Gourbiere
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, UMR 5096, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Corresponding author. (G.P.); (S.Y.)
| |
Collapse
|
14
|
Gran-Stadniczeñko S, Krabberød AK, Sandaa RA, Yau S, Egge E, Edvardsen B. Seasonal Dynamics of Algae-Infecting Viruses and Their Inferred Interactions with Protists. Viruses 2019; 11:v11111043. [PMID: 31717498 PMCID: PMC6893440 DOI: 10.3390/v11111043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022] Open
Abstract
Viruses are a highly abundant, dynamic, and diverse component of planktonic communities that have key roles in marine ecosystems. We aimed to reveal the diversity and dynamics of marine large dsDNA viruses infecting algae in the Northern Skagerrak, South Norway through the year by metabarcoding, targeting the major capsid protein (MCP) and its correlation to protist diversity and dynamics. Metabarcoding results demonstrated a high diversity of algal viruses compared to previous metabarcoding surveys in Norwegian coastal waters. We obtained 313 putative algal virus operational taxonomic units (vOTUs), all classified by phylogenetic analyses to either the Phycodnaviridae or Mimiviridae families, most of them in clades without any cultured or environmental reference sequences. The viral community showed a clear temporal variation, with some vOTUs persisting for several months. The results indicate co-occurrences between abundant viruses and potential hosts during long periods. This study gives new insights into the virus-algal host dynamics and provides a baseline for future studies of algal virus diversity and temporal dynamics.
Collapse
Affiliation(s)
- Sandra Gran-Stadniczeñko
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
- Correspondence: ; Tel.: +47-22-85-70-38
| | - Anders K. Krabberød
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), 08003 Barcelona, Spain;
| | - Elianne Egge
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| |
Collapse
|
15
|
Unity and diversity among viral kinases. Gene 2019; 723:144134. [PMID: 31589960 DOI: 10.1016/j.gene.2019.144134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Viral kinases are known to undergo autophosphorylation and also phosphorylate viral and host substrates. Viral kinases have been implicated in various diseases and are also known to acquire host kinases for mimicking cellular functions and exhibit virulence. Although substantial analyses have been reported in the literature on diversity of viral kinases, there is a gap in the understanding of sequence and structural similarity among kinases from different classes of viruses. In this study, we performed a comprehensive analysis of protein kinases encoded in viral genomes. Homology search methods have been used to identify kinases from 104,282 viral genomic datasets. Serine/threonine and tyrosine kinases are identified only in 390 viral genomes. Out of seven viral classes that are based on nature of genetic material, only viruses having double-stranded DNA and single-stranded RNA retroviruses are found to encode kinases. The 716 identified protein kinases are classified into 63 subfamilies based on their sequence similarity within each cluster, and sequence signatures have been identified for each subfamily. 11 clusters are well represented with at least 10 members in each of these clusters. Kinases from dsDNA viruses, Phycodnaviridae which infect green algae and Herpesvirales that infect vertebrates including human, form a major group. From our analysis, it has been observed that the protein kinases in viruses belonging to same taxonomic lineages form discrete clusters and the kinases encoded in alphaherpesvirus form host-specific clusters. A comprehensive sequence and structure-based analysis enabled us to identify the conserved residues or motifs in kinase catalytic domain regions across all viral kinases. Conserved sequence regions that are specific to a particular viral kinase cluster and the kinases that show close similarity to eukaryotic kinases were identified by using sequence and three-dimensional structural regions of eukaryotic kinases as reference. The regions specific to each viral kinase cluster can be used as signatures in the future in classifying uncharacterized viral kinases. We note that kinases from giant viruses Marseilleviridae have close similarity to viral oncogenes in the functional regions and in putative substrate binding regions indicating their possible role in cancer.
Collapse
|
16
|
Gornik SG, Hu I, Lassadi I, Waller RF. The Biochemistry and Evolution of the Dinoflagellate Nucleus. Microorganisms 2019; 7:microorganisms7080245. [PMID: 31398798 PMCID: PMC6723414 DOI: 10.3390/microorganisms7080245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dinoflagellates are known to possess a highly aberrant nucleus-the so-called dinokaryon-that exhibits a multitude of exceptional biological features. These include: (1) Permanently condensed chromosomes; (2) DNA in a cholesteric liquid crystalline state, (3) extremely large DNA content (up to 200 pg); and, perhaps most strikingly, (4) a deficit of histones-the canonical building blocks of all eukaryotic chromatin. Dinoflagellates belong to the Alveolata clade (dinoflagellates, apicomplexans, and ciliates) and, therefore, the biological oddities observed in dinoflagellate nuclei are derived character states. Understanding the sequence of changes that led to the dinokaryon has been difficult in the past with poor resolution of dinoflagellate phylogeny. Moreover, lack of knowledge of their molecular composition has constrained our understanding of the molecular properties of these derived nuclei. However, recent advances in the resolution of the phylogeny of dinoflagellates, particularly of the early branching taxa; the realization that divergent histone genes are present; and the discovery of dinoflagellate-specific nuclear proteins that were acquired early in dinoflagellate evolution have all thrown new light nature and evolution of the dinokaryon.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| | - Ian Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
17
|
The Macroalgal Holobiont in a Changing Sea. Trends Microbiol 2019; 27:635-650. [DOI: 10.1016/j.tim.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
|
18
|
Stough JMA, Yutin N, Chaban YV, Moniruzzaman M, Gann ER, Pound HL, Steffen MM, Black JN, Koonin EV, Wilhelm SW, Short SM. Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Front Microbiol 2019; 10:703. [PMID: 31024489 PMCID: PMC6459981 DOI: 10.3389/fmicb.2019.00703] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Some giant viruses are ecological agents that are predicted to be involved in the top-down control of single-celled eukaryotic algae populations in aquatic ecosystems. Despite an increased interest in giant viruses since the discovery and characterization of Mimivirus and other viral giants, little is known about their physiology and ecology. In this study, we characterized the genome and functional potential of a giant virus that infects the freshwater haptophyte Chrysochromulina parva, originally isolated from Lake Ontario. This virus, CpV-BQ2, is a member of the nucleo-cytoplasmic large DNA virus (NCLDV) group and possesses a 437 kb genome encoding 503 ORFs with a GC content of 25%. Phylogenetic analyses of core NCLDV genes place CpV-BQ2 amongst the emerging group of algae-infecting Mimiviruses informally referred to as the “extended Mimiviridae,” making it the first virus of this group to be isolated from a freshwater ecosystem. During genome analyses, we also captured and described the genomes of three distinct virophages that co-occurred with CpV-BQ2 and likely exploit CpV for their own replication. These virophages belong to the polinton-like viruses (PLV) group and encompass 19–23 predicted genes, including all of the core PLV genes as well as several genes implicated in genome modifications. We used the CpV-BQ2 and virophage reference sequences to recruit reads from available environmental metatranscriptomic data to estimate their activity in fresh waters. We observed moderate recruitment of both virus and virophage transcripts in samples obtained during Microcystis aeruginosa blooms in Lake Erie and Lake Tai, China in 2013, with a spike in activity in one sample. Virophage transcript abundance for two of the three isolates strongly correlated with that of the CpV-BQ2. Together, the results highlight the importance of giant viruses in the environment and establish a foundation for future research on the physiology and ecology CpV-BQ2 as a model system for algal Mimivirus dynamics in freshwaters.
Collapse
Affiliation(s)
- Joshua M A Stough
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Yuri V Chaban
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mohammed Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena L Pound
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Jenna N Black
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
19
|
Chloroviruses Lure Hosts through Long-Distance Chemical Signaling. J Virol 2019; 93:JVI.01688-18. [PMID: 30626679 DOI: 10.1128/jvi.01688-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses exist in aquatic systems around the planet and they infect certain eukaryotic green algae that are mutualistic endosymbionts in a variety of protists and metazoans. Natural chlorovirus populations are seasonally dynamic, but the precise temporal changes in these populations and the mechanisms that underlie them have heretofore been unclear. We recently reported the novel concept that predator/prey-mediated virus activation regulates chlorovirus population dynamics, and in the current study, we demonstrate virus-packaged chemotactic modulation of prey behavior.IMPORTANCE Viruses have not previously been reported to act as chemotactic/chemoattractive agents. Rather, viruses as extracellular entities are generally viewed as non-metabolically active spore-like agents that await further infection events upon collision with appropriate host cells. That a virus might actively contribute to its fate via chemotaxis and change the behavior of an organism independent of infection is unprecedented.
Collapse
|
20
|
Cryopreservation of Paramecium bursaria Chlorella Virus-1 during an active infection cycle of its host. PLoS One 2019; 14:e0211755. [PMID: 30870463 PMCID: PMC6417706 DOI: 10.1371/journal.pone.0211755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
Best practices in laboratory culture management often include cryopreservation of microbiota, but this can be challenging with some virus particles. By preserving viral isolates researchers can mitigate genetic drift and laboratory-induced selection, thereby maintaining genetically consistent strains between experiments. To this end, we developed a method to cryopreserve the model, green-alga infecting virus, Paramecium bursaria Chlorella virus 1 (PBCV-1). We explored cryotolerance of the infectivity of this virus particle, whereby freezing without cryoprotectants was found to maintain the highest infectivity (~2.5%). We then assessed the cryopreservation potential of PBCV-1 during an active infection cycle in its Chlorella variabilis NC64A host, and found that virus survivorship was highest (69.5 ± 16.5%) when the infected host is cryopreserved during mid-late stages of infection (i.e., coinciding with virion assembly). The most optimal condition for cryopreservation was observed at 240 minutes post-infection. Overall, utilizing the cell as a vehicle for viral cryopreservation resulted in 24.9–30.1 fold increases in PBCV-1 survival based on 95% confidence intervals of frozen virus particles and virus cryopreserved at 240 minutes post-infection. Given that cryoprotectants are often naturally produced by psychrophilic organisms, we suspect that cryopreservation of infected hosts may be a reliable mechanism for virus persistence in non-growth permitting circumstances in the environment, such as ancient permafrosts.
Collapse
|
21
|
Seitzer P, Jeanniard A, Ma F, Van Etten JL, Facciotti MT, Dunigan DD. Gene Gangs of the Chloroviruses: Conserved Clusters of Collinear Monocistronic Genes. Viruses 2018; 10:E576. [PMID: 30347809 PMCID: PMC6213493 DOI: 10.3390/v10100576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses (family Phycodnaviridae) are dsDNA viruses found throughout the world's inland waters. The open reading frames in the genomes of 41 sequenced chloroviruses (330 ± 40 kbp each) representing three virus types were analyzed for evidence of evolutionarily conserved local genomic "contexts", the organization of biological information into units of a scale larger than a gene. Despite a general loss of synteny between virus types, we informatically detected a highly conserved genomic context defined by groups of three or more genes that we have termed "gene gangs". Unlike previously described local genomic contexts, the definition of gene gangs requires only that member genes be consistently co-localized and are not constrained by strand, regulatory sites, or intervening sequences (and therefore represent a new type of conserved structural genomic element). An analysis of functional annotations and transcriptomic data suggests that some of the gene gangs may organize genes involved in specific biochemical processes, but that this organization does not involve their coordinated expression.
Collapse
Affiliation(s)
- Phillip Seitzer
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
- Proteome Software, Portland, OR 97219, USA
| | - Adrien Jeanniard
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - Fangrui Ma
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - James L. Van Etten
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| | - Marc T. Facciotti
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
| | - David D. Dunigan
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| |
Collapse
|
22
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
23
|
Nissimov JI, Vandzura R, Johns CT, Natale F, Haramaty L, Bidle KD. Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. Environ Microbiol 2018; 20:2880-2897. [PMID: 29921002 DOI: 10.1111/1462-2920.14261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
Abstract
Emiliania huxleyi produces calcium carbonate (CaCO3 ) coccoliths and transparent exopolymer particles (TEP), sticky, acidic carbohydrates that facilitate aggregation. E. huxleyi's extensive oceanic blooms are often terminated by coccolithoviruses (EhVs) with the transport of cellular debris and associated particulate organic carbon (POC) to depth being facilitated by TEP-bound 'marine snow' aggregates. The dynamics of TEP production and particle aggregation in response to EhV infection are poorly understood. Using flow cytometry, spectrophotometry and FlowCam visualization of alcian blue (AB)-stained aggregates, we assessed TEP production and the size spectrum of aggregates for E. huxleyi possessing different degrees of calcification and cellular CaCO3 :POC mass ratios, when challenged with two EhVs (EhV207 and EhV99B1). FlowCam imaging also qualitatively assessed the relative amount of AB-stainable TEP (i.e., blue:red ratio of each particle). We show significant increases in TEP during early phase EhV207-infection (∼ 24 h) of calcifying strains and a shift towards large aggregates following EhV99B1-infection. We also observed the formation of large aggregates with low blue:red ratios, suggesting that other exopolymer substances contribute towards aggregation. Our findings show the potential for virus infection and the associated response of their hosts to impact carbon flux dynamics and provide incentive to explore these dynamics in natural populations.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| |
Collapse
|
24
|
Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield AC, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current. Front Microbiol 2018; 9:1474. [PMID: 30065704 PMCID: PMC6056678 DOI: 10.3389/fmicb.2018.01474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
Collapse
Affiliation(s)
- Flavia Flaviani
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,School of Biological Sciences, University of Reading, Reading, United Kingdom.,College of Veterinary Medicine, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Karen Lebret
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Cecilia Balestreri
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Andrea C Highfield
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Joanna L Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Sally E Thorpe
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Karen Moore
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Konrad Pasckiewicz
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Maya C Pfaff
- Department of Environmental Affairs, Oceans and Coasts, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Chen H, Zhang W, Li X, Pan Y, Yan S, Wang Y. The genome of a prasinoviruses-related freshwater virus reveals unusual diversity of phycodnaviruses. BMC Genomics 2018; 19:49. [PMID: 29334892 PMCID: PMC5769502 DOI: 10.1186/s12864-018-4432-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phycodnaviruses are widespread algae-infecting large dsDNA viruses and presently contain six genera: Chlorovirus, Prasinovirus, Prymnesiovirus, Phaeovirus, Coccolithovirus and Raphidovirus. The members in Prasinovirus are identified as marine viruses due to their marine algal hosts, while prasinovirus freshwater relatives remain rarely reported. Results Here we present the complete genomic sequence of a novel phycodnavirus, Dishui Lake Phycodnavirus 1 (DSLPV1), which was assembled from Dishui Lake metagenomic datasets. DSLPV1 harbors a linear genome of 181,035 bp in length (G + C content: 52.7%), with 227 predicted genes and 2 tRNA encoding regions. Both comparative genomic and phylogenetic analyses indicate that the freshwater algal virus DSLPV1 is closely related to the members in Prasinovirus, a group of marine algae infecting viruses. In addition, a complete eukaryotic histone H3 variant was identified in the genome of DSLPV1, which is firstly detected in phycodnaviruses and contributes to understand the interaction between algal virus and its eukaryotic hosts. Conclusion It is in a freshwater ecosystem that a novel Prasinovirus-related viral complete genomic sequence is discovered, which sheds new light on the evolution and diversity of the algae infecting Phycodnaviridae. Electronic supplementary material The online version of this article (10.1186/s12864-018-4432-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weijia Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Present address: Archaea Center, Department of Biology, Copenhagen University, DK2000, Copenhagen, Denmark
| | - Xiefei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
26
|
Variation in the Genetic Repertoire of Viruses Infecting Micromonas pusilla Reflects Horizontal Gene Transfer and Links to Their Environmental Distribution. Viruses 2017; 9:v9050116. [PMID: 28534829 PMCID: PMC5454428 DOI: 10.3390/v9050116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae. This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla, other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla, viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla, but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes.
Collapse
|
27
|
Van Etten JL, Agarkova I, Dunigan DD, Tonetti M, De Castro C, Duncan GA. Chloroviruses Have a Sweet Tooth. Viruses 2017; 9:E88. [PMID: 28441734 PMCID: PMC5408694 DOI: 10.3390/v9040088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Irina Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova Viale Benedetto XV/1, 16132 Genova, Italy.
| | - Christina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Università 100, 80055 Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2796, USA.
| |
Collapse
|
28
|
Ruiz E, Baudoux AC, Simon N, Sandaa RA, Thingstad TF, Pagarete A. Micromonas versus virus: New experimental insights challenge viral impact. Environ Microbiol 2017; 19:2068-2076. [DOI: 10.1111/1462-2920.13733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Eliana Ruiz
- Department of Biology; University of Bergen; Bergen Norway
| | - Anne-Claire Baudoux
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | - Nathalie Simon
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | | | | | | |
Collapse
|
29
|
Nissimov JI, Pagarete A, Ma F, Cody S, Dunigan DD, Kimmance SA, Allen MJ. Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery. Viruses 2017; 9:v9030052. [PMID: 28335474 PMCID: PMC5371807 DOI: 10.3390/v9030052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - António Pagarete
- Department of Biology, University of Bergen, Bergen, 7803, Norway.
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Sean Cody
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
30
|
Colombet J, Robin A, Sime-Ngando T. Genotypic, size and morphological diversity of virioplankton in a deep oligomesotrophic freshwater lake (Lac Pavin, France). J Environ Sci (China) 2017; 53:48-59. [PMID: 28372760 DOI: 10.1016/j.jes.2016.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 06/07/2023]
Abstract
We examined changes in morphological and genomic diversities of viruses by means of transmission electronic microscopy and pulsed field gel electrophoresis (PFGE) over a nine-month period (April-December 2005) at four different depths in the oligomesotrophic Lac Pavin. We found that the majority of viruses in this lake belonged to the family of Siphoviridae or were untailed, with capsid sizes ranging from 30 to 60nm, and exhibited genome sizes ranging from 15 to 45kb. On average, 12 different genotypes dominated each of the PFGE fingerprints. The highest genomic viral richness was recorded in summer (mean=14 bands per PFGE fingerprint) and in the epilimnion (mean=13 bands per PFGE fingerprint). Among the physico-chemical and biological variables considered, the availability of the hosts appeared to be the main factor regulating the variations in the viral diversity.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratory Microorganisms: Genome and Environment, Clermont University Blaise Pascal, UMR CNRS 6023, 24 avenue des Landais, BP 80026, F-63171 Aubière, France.
| | - Agnès Robin
- CIRAD, UMR Eco&Sols, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Télesphore Sime-Ngando
- Laboratory Microorganisms: Genome and Environment, Clermont University Blaise Pascal, UMR CNRS 6023, 24 avenue des Landais, BP 80026, F-63171 Aubière, France
| |
Collapse
|
31
|
Andriolo JM, Rossi RJ, McConnell CA, Connors BI, Trout KL, Hailer MK, Pedulla ML, Skinner JL. Influence of Iron-Doped Apatite Nanoparticles on Viral Infection Examined in Bacterial Versus Algal Systems. IEEE Trans Nanobioscience 2016; 15:908-916. [PMID: 27775532 DOI: 10.1109/tnb.2016.2619349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Centers for Disease Control and Prevention have estimated that each year, two million people in the United States become infected with antibiotic-resistant bacteria, of which, approximately 23000 die as a direct result of these infections. Phage therapy, or the treatment of bacterial infection by specific, antagonistic viruses, provides one alternative to traditional antibiotics. Bacteriophages, or phages, are bacteria-specific viruses that possess biological traits that allow for not only the removal of bacterial infection, but also the evasion of bacterial resistance, which renders antibiotics ineffective. Previous research has shown the addition of iron-doped apatite nanoparticles (IDANPs) to bacteria prior to phage exposure results in increased bacterial plaques in vitro. Coupled with the biocompatible nature of apatite, these results provide promise for future use of IDANPs as adjuvants to phage therapy along with anti-bacterial applications yet to be explored. Although IDANP enhancement of phage infection has been replicated many times in gram-positive and gram-negative prokaryotic hosts as well as with the utilization of both RNA and DNA viruses, the specific mechanisms involved remain elusive. To further understand increased phage infections in a prokaryotic system, and to evaluate the safety of IDANPs as a treatment used in a eukaryotic system, we have replicated plaque assay experiments in an algal system using Chlorella variabilis NC64A and its virus, Paramecium bursaria chlorella virus 1 (PBCV-1). Statistical modeling was used to evaluate alteration in numbers of plaques observed after viral introduction in IDANP-exposed versus non-IDANP-exposed bacterial and algal cell cultures. While IDANPs synthesized between 25°C-45°C and doped with 30% iron have been shown to influence dramatic increases in phage-induced bacterial death, experiments replicated in an algal system indicated viral infections do not increase when C. variabilis cells are pre-exposed to IDANPs. It is essential to potential use of IDANPs as an antibacterial adjuvant that IDANPs do not increase viral infection of eukaryotic host cells during treatment.
Collapse
|
32
|
|
33
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
34
|
Zhang R, Hisano S, Tani A, Kondo H, Kanematsu S, Suzuki N. A capsidless ssRNA virus hosted by an unrelated dsRNA virus. Nat Microbiol 2016; 1:15001. [DOI: 10.1038/nmicrobiol.2015.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
|
35
|
The Autonomous Glycosylation of Large DNA Viruses. Int J Mol Sci 2015; 16:29315-28. [PMID: 26690138 PMCID: PMC4691112 DOI: 10.3390/ijms161226169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.
Collapse
|
36
|
Zhang W, Zhou J, Liu T, Yu Y, Pan Y, Yan S, Wang Y. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep 2015; 5:15131. [PMID: 26459929 PMCID: PMC4602308 DOI: 10.1038/srep15131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts.
Collapse
Affiliation(s)
- Weijia Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jinglie Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage &Preservation, Ministry of Agriculture, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage &Preservation, Ministry of Agriculture, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage &Preservation, Ministry of Agriculture, Shanghai, China
| |
Collapse
|
37
|
Baudoux AC, Lebredonchel H, Dehmer H, Latimier M, Edern R, Rigaut-Jalabert F, Ge P, Guillou L, Foulon E, Bozec Y, Cariou T, Desdevises Y, Derelle E, Grimsley N, Moreau H, Simon N. Interplay between the genetic clades of Micromonas and their viruses in the Western English Channel. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:765-773. [PMID: 26081716 DOI: 10.1111/1758-2229.12309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/13/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
The genus Micromonas comprises distinct genetic clades that commonly dominate eukaryotic phytoplankton community from polar to tropical waters. This phytoplankter is also recurrently infected by abundant and genetically diverse prasinoviruses. Here we report on the interplay between prasinoviruses and Micromonas with regard to the genetic diversity of this host. For 1 year, we monitored the abundance of three clades of Micromonas and their viruses in the Western English Channel, both in the environment using clade-specific probes and flow cytometry, and in the laboratory using clonal strains of Micromonas clades to assay for their viruses by plaque-forming units. We showed that the seasonal fluctuations of Micromonas clades were closely mirrored by the abundance of their corresponding viruses, indicating that the members of Micromonas genus are susceptible to viral infection, regardless of their genetic affiliation. The characterization of 45 viral isolates revealed that Micromonas clades are attacked by specific virus populations, which exhibit distinctive clade specificity, life strategies and genetic diversity. However, some viruses can also cross-infect different host clades, suggesting a mechanism of horizontal gene transfer within the Micromonas genus. This study provides novel insights into the impact of viral infection for the ecology and evolution of the prominent phytoplankter Micromonas.
Collapse
Affiliation(s)
- A-C Baudoux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - H Lebredonchel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - H Dehmer
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - M Latimier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - R Edern
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - F Rigaut-Jalabert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Fédération de Recherche (FR2424), Station Biologique de Roscoff, 29680, Roscoff, France
| | - P Ge
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - L Guillou
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - E Foulon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Y Bozec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| | - T Cariou
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Fédération de Recherche (FR2424), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Y Desdevises
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - E Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - N Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - H Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - N Simon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144), Station Biologique de Roscoff, 29680, Roscoff, France
| |
Collapse
|
38
|
Wang MN, Ge XY, Wu YQ, Yang XL, Tan B, Zhang YJ, Shi ZL. Genetic diversity and temporal dynamics of phytoplankton viruses in East Lake, China. Virol Sin 2015; 30:290-300. [PMID: 26248585 DOI: 10.1007/s12250-015-3603-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022] Open
Abstract
Phytoplankton viruses are important components of aquatic ecosystems. However, their prevalence and genetic diversity in marine and freshwater systems are largely under estimated owing to the immense size of water bodies and limitations in virus discovery techniques. In this study, we conducted a 1-year survey of phytoplankton virus communities by collecting surface water monthly from an inland lake (East Lake) in China between May 2012 and April 2013. We examined four phytoplankton viruses, i.e., myoviruses, podoviruses, siphoviruses, and phycodnaviruses, and seven sets of primers were used to target conserved genes within these four species. In this year-long investigation, a total of 358 different virus-related sequences from four virus families were obtained. All virus families were detected in all months, except for cyanopodoviruses, which were only identified during eight of the 12 months surveyed. Moreover, virus abundance and diversity changed dynamically over time. Phylogenetic analysis revealed that the majority of viral sequences from East Lake, China displayed distinct clustering patterns compared with published sequences. These results supported the existence of a highly diverse and unique phytoplankton virus community in East Lake, China.
Collapse
Affiliation(s)
- Mei-Niang Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Nissimov JI, Napier JA, Allen MJ, Kimmance SA. Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environ Microbiol 2015; 18:133-45. [PMID: 25970076 DOI: 10.1111/1462-2920.12902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/20/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Johnathan A Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| |
Collapse
|
40
|
Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa RA, Edvardsen B. Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 2015; 24:3026-42. [PMID: 25893259 PMCID: PMC4692090 DOI: 10.1111/mec.13160] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/06/2015] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Abstract
Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September–October (autumn) and lowest in April–May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3–5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters.
Collapse
Affiliation(s)
| | - Torill Vik Johannessen
- Marine Microbiology, Department of Biology, University of Bergen, PO Box 7803, 5006, Bergen, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway
| | - Wenche Eikrem
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway.,Norwegian Institute for Water Research, Gaustadalléen 21, 0349, Oslo, Norway
| | - Lucie Bittner
- CNRS FR3631, Institut de Biologie Paris-Seine, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005, Paris, France
| | - Aud Larsen
- Uni Research Environment, Thormøhlensgate 49b, N-5006, Bergen, Norway.,Hjort Centre for Marine Ecosystem Dynamics, N-5006, Bergen, Norway
| | - Ruth-Anne Sandaa
- Marine Microbiology, Department of Biology, University of Bergen, PO Box 7803, 5006, Bergen, Norway
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, PO Box 1066, 0316, Oslo, Norway
| |
Collapse
|
41
|
Petrzik K, Vondrák J, Kvíderová J, Lukavský J. Platinum anniversary: virus and lichen alga together more than 70 years. PLoS One 2015; 10:e0120768. [PMID: 25789995 PMCID: PMC4366220 DOI: 10.1371/journal.pone.0120768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/07/2015] [Indexed: 11/18/2022] Open
Abstract
Trebouxia aggregata (Archibald) Gärtner (phylum Chlorophyta, family Trebouxiaceae), a lichen symbiotic alga, has been identified as host of the well-known herbaceous plant virus Cauliflower mosaic virus (CaMV, family Caulimoviridae). The alga had been isolated from Xanthoria parietina more than 70 years ago and has been maintained in a collection since that time. The CaMV detected in this collection entry has now been completely sequenced. The virus from T. aggregata is mechanically transmissible to a herbaceous host and induces disease symptoms there. Its genome differs by 173 nt from the closest European CaMV-D/H isolate from cauliflower. No site under positive selection was found on the CaMV genome from T. aggregata. We therefore assume that the virus's presence in this alga was not sufficiently long to fix any specific changes in its genome. Apart from this symbiotic alga, CaMV capsid protein sequences were amplified from many other non-symbiotic algae species maintained in a collection (e.g., Oonephris obesa, Elliptochloris sp., Microthamnion kuetzingianum, Chlorella vulgaris, Pseudococcomyxa sp.). CaMV-free Chlorella vulgaris was treated with CaMV to establish virus infection. The virus was still detected there after five passages. The virus infection is morphologically symptomless on Chlorella algae and the photosynthesis activity is slightly decreased in comparison to CaMV-free alga culture. This is the first proof as to the natural presence of CaMV in algae and the first demonstration of algae being artificially infected with this virus.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- * E-mail:
| | - Jan Vondrák
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, Praha 6, Suchdol, Czech Republic
| | - Jana Kvíderová
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Jaromír Lukavský
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
42
|
Schatz D, Shemi A, Rosenwasser S, Sabanay H, Wolf SG, Ben-Dor S, Vardi A. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. THE NEW PHYTOLOGIST 2014; 204:854-63. [PMID: 25195618 PMCID: PMC4233938 DOI: 10.1111/nph.13008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/27/2014] [Indexed: 05/04/2023]
Abstract
Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown. We used diverse techniques, including fluorescence microscopy, transmission electron microscopy, cryoelectron tomography, immunolabeling and biochemical methodologies to investigate the role of autophagy in host-virus interactions. Hallmarks of autophagy are induced during the lytic phase of E. huxleyi viral infection, concomitant with up-regulation of autophagy-related genes (ATG genes). Pretreatment of the infected cells with an autophagy inhibitor causes a major reduction in the production of extracellular viral particles, without reducing viral DNA replication within the cell. The host-encoded Atg8 protein was detected within purified virions, demonstrating the pivotal role of the autophagy-like process in viral assembly and egress. We show that autophagy, which is classically considered as a defense mechanism, is essential for viral propagation and for facilitating a high burst size. This cellular mechanism may have a major impact on the fate of the viral-infected blooms, and therefore on the cycling of nutrients within the marine ecosystem.
Collapse
Affiliation(s)
- Daniella Schatz
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Adva Shemi
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Shilo Rosenwasser
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Helena Sabanay
- Department of Chemical Research Support, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Assaf Vardi
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
- Author for correspondence: Assaf Vardi, Tel: +972 8 934 2914,
| |
Collapse
|
43
|
Lawrence SA, Wilson WH, Davy JE, Davy SK. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). JOURNAL OF PHYCOLOGY 2014; 50:984-97. [PMID: 26988781 DOI: 10.1111/jpy.12242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/08/2014] [Indexed: 05/12/2023]
Abstract
Coral reefs are increasingly threatened by disease outbreaks, which affect the coral animal and/or its algal symbionts (Symbiodinium spp.) and can cause mass mortalities. Currently around half of the recognized coral diseases have unknown causative agents. While many of the diseases are thought to be bacterial in origin, there is growing evidence that viruses may play a role. In particular, it appears that viruses may infect the algal symbionts, causing breakdown of the coral-algal mutualism. In this study, we screened a wide range of Symbiodinium cultures in vitro for the presence of latent viral infections. Using flow cytometry and electron microscopy, we found that many types of Symbiodinium apparently harbor such infections, and that the type of putative virus varied within and among host types. Furthermore, the putative viral infections could be induced via abiotic stress and cause host cell lysis and population decline. If similar processes occur in Symbiodinium cells in hospite, they may provide an explanation for some of the diseases affecting corals and other organisms forming symbioses with these algae.
Collapse
Affiliation(s)
- Scott A Lawrence
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - William H Wilson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Joanne E Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
44
|
Agarkova I, Hertel B, Zhang X, Lane L, Tchourbanov A, Dunigan DD, Thiel G, Rossmann MG, Van Etten JL. Dynamic attachment of Chlorovirus PBCV-1 to Chlorella variabilis. Virology 2014; 466-467:95-102. [PMID: 25240455 PMCID: PMC4254200 DOI: 10.1016/j.virol.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 11/27/2022]
Abstract
Chloroviruses infect their hosts by specifically binding to and degrading the cell wall of their algal hosts at the site of attachment, using an intrinsic digesting enzyme(s). Chlorovirus PBCV-1 stored as a lysate survived longer than virus alone, suggesting virus attachment to cellular debris may be reversible. Ghost cells (algal cells extracted with methanol) were used as a model to study reversibility of PBCV-1 attachment because ghost cells are as susceptible to attachment and wall digestion as are live cells. Reversibility of attachment to ghost cells was examined by releasing attached virions with a cell wall degrading enzyme extract. The majority of the released virions retained infectivity even after re-incubating the released virions with ghost cells two times. Thus the chloroviruses appear to have a dynamic attachment strategy that may be beneficial in indigenous environments where cell wall debris can act as a refuge until appropriate host cells are available.
Collapse
Affiliation(s)
- Irina Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States
| | - Brigitte Hertel
- Technische Universität Darmstadt, Department of Biology, Plant Membrane Biophysics, 64287 Darmstadt, Germany
| | - Xinzheng Zhang
- Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-2032, United States
| | - Les Lane
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, United States
| | - Alexander Tchourbanov
- Genetics Core, University of Arizona, 246B Biological Science West, 1041 East Lowell St, Tucson, AZ 85721-0499, United States
| | - David D Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States
| | - Gerhard Thiel
- Technische Universität Darmstadt, Department of Biology, Plant Membrane Biophysics, 64287 Darmstadt, Germany
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-2032, United States
| | - James L Van Etten
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States.
| |
Collapse
|
45
|
High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of antarctic soils. Appl Environ Microbiol 2014; 80:6888-97. [PMID: 25172856 DOI: 10.1128/aem.01525-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic viruses (i.e., phages) represented the largest viral component (particularly Mycobacterium phages) in both habitats, with an identical hierarchical sequence abundance of families of tailed phages (Siphoviridae > Myoviridae > Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed. Phycodnaviridae and Mimiviridae viruses were the second-most-abundant taxa and more numerous within open soil. Novel virophage-like sequences (within the Sputnik clade) were identified. These findings highlight high-level virus diversity and novel species discovery potential within Antarctic hyperarid soils and may serve as a starting point for future studies targeting specific viral groups.
Collapse
|
46
|
Weynberg KD, Wood-Charlson EM, Suttle CA, van Oppen MJH. Generating viral metagenomes from the coral holobiont. Front Microbiol 2014; 5:206. [PMID: 24847321 PMCID: PMC4019844 DOI: 10.3389/fmicb.2014.00206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available) the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.
Collapse
Affiliation(s)
| | | | - Curtis A. Suttle
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British ColumbiaVancouver, BC, Canada
- Department of Botany, University of British ColumbiaVancouver, BC, Canada
- Canadian Institute for Advanced Research, University of British ColumbiaVancouver, BC, Canada
| | | |
Collapse
|
47
|
Bellec L, Clerissi C, Edern R, Foulon E, Simon N, Grimsley N, Desdevises Y. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol Biol 2014; 14:59. [PMID: 24669847 PMCID: PMC3983898 DOI: 10.1186/1471-2148-14-59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/20/2014] [Indexed: 01/10/2023] Open
Abstract
Background Numerous studies have investigated cospeciation (or cophylogeny) in various host-symbiont systems, and different patterns were inferred, from strict cospeciation where symbiont phylogeny mirrors host phylogeny, to complete absence of correspondence between trees. The degree of cospeciation is generally linked to the level of host specificity in the symbiont species and the opportunity they have to switch hosts. In this study, we investigated cophylogeny for the first time in a microalgae-virus association in the open sea, where symbionts are believed to be highly host-specific but have wide opportunities to switch hosts. We studied prasinovirus-Mamiellales associations using 51 different viral strains infecting 22 host strains, selected from the characterisation and experimental testing of the specificities of 313 virus strains on 26 host strains. Results All virus strains were restricted to their host genus, and most were species-specific, but some of them were able to infect different host species within a genus. Phylogenetic trees were reconstructed for viruses and their hosts, and their congruence was assessed based on these trees and the specificity data using different cophylogenetic methods, a topology-based approach, Jane, and a global congruence method, ParaFit. We found significant congruence between virus and host trees, but with a putatively complex evolutionary history. Conclusions Mechanisms other than true cospeciation, such as host-switching, might explain a part of the data. It has been observed in a previous study on the same taxa that the genomic divergence between host pairs is larger than between their viruses. It implies that if cospeciation predominates in this algae-virus system, this would support the hypothesis that prasinoviruses evolve more slowly than their microalgal hosts, whereas host switching would imply that these viruses speciated more recently than the divergence of their host genera.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yves Desdevises
- Integrative Biology of Marine Organisms, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, F-66650 Banyuls-sur-Mer, France.
| |
Collapse
|
48
|
Blanc G, Mozar M, Agarkova IV, Gurnon JR, Yanai-Balser G, Rowe JM, Xia Y, Riethoven JJ, Dunigan DD, Van Etten JL. Deep RNA sequencing reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1. PLoS One 2014; 9:e90989. [PMID: 24608750 PMCID: PMC3946568 DOI: 10.1371/journal.pone.0090989] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of the genus Chlorovirus (family Phycodnaviridae) that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i.), transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+)-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i.) was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.
Collapse
Affiliation(s)
- Guillaume Blanc
- Laboratoire Information Structurale and Génomique UMR7256 CNRS, Aix-Marseille Université, Marseille, France
- * E-mail:
| | - Michael Mozar
- Laboratoire Information Structurale and Génomique UMR7256 CNRS, Aix-Marseille Université, Marseille, France
| | - Irina V. Agarkova
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - James R. Gurnon
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Giane Yanai-Balser
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Janet M. Rowe
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuannan Xia
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
49
|
Drulis-Kawa Z, Olszak T, Danis K, Majkowska-Skrobek G, Ackermann HW. A giant Pseudomonas phage from Poland. Arch Virol 2014; 159:567-72. [PMID: 24072472 PMCID: PMC3936114 DOI: 10.1007/s00705-013-1844-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/31/2013] [Indexed: 11/30/2022]
Abstract
A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland,
| | | | | | | | | |
Collapse
|
50
|
Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans. Proc Natl Acad Sci U S A 2013; 110:13956-60. [PMID: 23918378 DOI: 10.1073/pnas.1313005110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.
Collapse
|