1
|
Stone AL, Damsteegt VD, Smith OP, Stewart LR. Global phylogenetic analysis of soybean dwarf virus isolates and their associations with aphid vectors and severe disease in soybeans. Virology 2024; 591:109984. [PMID: 38242060 DOI: 10.1016/j.virol.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Soybean dwarf virus (SbDV) was first described in Japan as an agent of severe soybean disease transmitted by the foxglove aphid, Aulacorthum solani, with separable yellowing (Y) and dwarfing (D) strains. SbDV of both Y and D genotypes were later documented in other countries. For three decades, SbDV isolates were assessed to evaluate risk to U.S. soybean production. U.S. SbDV isolates were transmitted by the pea aphid Acyrthosiphum pisum and showed limited disease in soybeans, suggesting it was not a major threat to U.S. soybean production. Here we report 21 new full-length SbDV genome sequences including those of the originally described Japanese Y and D isolates, isolates from Syria and New Zealand associated with severe disease, and 17 isolates from U.S. field collections. Using these new full-length genomes, a global phylogeny was assembled and used to revisit risk assessment based on sequence similarities, isolate pathogenicity, and vector specificity.
Collapse
Affiliation(s)
- Andrew L Stone
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| | - Vernon D Damsteegt
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA
| | - Oney P Smith
- Department of Biology, Hood College, Frederick, MD, 21701, USA
| | - Lucy R Stewart
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| |
Collapse
|
2
|
Survey of Viruses Infecting Tomato, Cucumber and Mung Bean in Tajikistan. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral diseases are major constraints to tomato, cucumber and mung bean production in most areas where these crops are grown. To identify the viruses on the crops in Tajikistan, a field survey was conducted in 2019. Samples of cucumber, mung bean and tomato with virus-like symptoms were collected and the viruses present were diagnosed by RT-PCR and PCR. Across all the samples, a very high proportion of the samples were infected with viruses from the genera Cucumovirus and Potyvirus. Cucumber mosaic virus (CMV; Cucumovirus) was very common in the collected samples of the three crops. As for Potyvirus, Potato virus Y (PVY) was detected in the collected tomato samples, Zucchini yellow mosaic virus (ZYMV) was identified in the collected cucumber samples, and Bean common mosaic virus (BCMV) was detected in 53% of the mung bean samples. Over 68% of the collected samples were infected with two or more viruses, suggesting that mixed infections are common for the three crops. Due to the results that the most identified viruses for the three crops are transmitted by aphids, the management of aphids is extremely important for the production of tomato, cucumber and mung bean in Tajikistan.
Collapse
|
3
|
Abraham A, Vetten HJ. Chickpea chlorotic stunt virus: a threat to cool-season food legumes. Arch Virol 2021; 167:21-30. [PMID: 34729666 DOI: 10.1007/s00705-021-05288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Chickpea chlorotic stunt virus (CpCSV, genus Polerovirus, family Solemoviridae), first reported in Ethiopia in 2006, causes an economically important yellowing and stunting disease in legume crops such as chickpea, faba bean, field pea, and lentil in most production areas of North Africa and Central and West Asia. Disease epidemics have been reported in Ethiopia, Syria, and Tunisia. The virus is transmitted persistently by aphids of the species Aphis craccivora and Acyrthosiphon pisum and naturally infects several legume and non-legume hosts. CpCSV exists as at least two geographic strain groups that differ in their genome sequence and serological and biological properties. In addition, a genetically divergent isolate proposed to be a member of a distinct polerovirus species has been reported from pea and faba bean in China. The ssRNA genome of the Ethiopian isolate has 5900 nucleotides, is encapsidated in isometric particles of ~ 28 nm diameter, and is suggested to have evolved by recombination of cucurbit aphid-borne yellows virus- and soybean dwarf virus-like parents. Moreover, a number of newly reported poleroviruses are suggested to have evolved by recombination between CpCSV and other parental poleroviruses. Identification of sources of resistance and further knowledge on disease epidemiology, including specific strains, vectors, and alternate hosts in different growing areas, are required for devising effective disease management strategies. Modern biotechnology tools such as next-generation sequencing, molecular markers, and agroinoculation-based resistance screening techniques can expedite future research and management efforts. This review addresses various aspects of CpCSV, including its properties, ecology, the disease it causes, management options, and future research perspectives.
Collapse
Affiliation(s)
- Adane Abraham
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | | |
Collapse
|
4
|
Wang Z, Chen B, Zhang T, Zhou G, Yang X. Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Front Microbiol 2021; 12:715223. [PMID: 34394065 PMCID: PMC8358444 DOI: 10.3389/fmicb.2021.715223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Chatzivassiliou EK. An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics. PLANTS 2021; 10:plants10071413. [PMID: 34371616 PMCID: PMC8309371 DOI: 10.3390/plants10071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized.
Collapse
Affiliation(s)
- Elisavet K Chatzivassiliou
- Plant Pathology Laboratory, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
6
|
Abstract
Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus-vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus-vector-plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus-insect-plant three-way interactions in the field during natural infection.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Stéphane Blanc
- Plant Health Institute of Montpellier, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, Montpellier, France;
| |
Collapse
|
7
|
Makkouk KM. Plant Pathogens which Threaten Food Security: Viruses of Chickpea and Other Cool Season Legumes in West Asia and North Africa. Food Secur 2020. [DOI: 10.1007/s12571-020-01017-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Łukasik I, Wołoch A, Sytykiewicz H, Sprawka I, Goławska S. Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation. PLoS One 2019; 14:e0221160. [PMID: 31412084 PMCID: PMC6693767 DOI: 10.1371/journal.pone.0221160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/31/2019] [Indexed: 11/18/2022] Open
Abstract
The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to biotic stress factors, including aphids. The purpose of this research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Płomyk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resistant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT, PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Płomyk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota Karłowa.
Collapse
Affiliation(s)
- Iwona Łukasik
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
- * E-mail:
| | - Aleksandra Wołoch
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Hubert Sytykiewicz
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Iwona Sprawka
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Sylwia Goławska
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| |
Collapse
|
9
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
10
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
11
|
Targeted disruption of aphid transmission: a vision for the management of crop diseases caused by Luteoviridae members. Curr Opin Virol 2018; 33:24-32. [DOI: 10.1016/j.coviro.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
|
12
|
Molecular characterization of faba bean necrotic yellows viruses in Tunisia. Arch Virol 2017; 163:687-694. [PMID: 29147784 DOI: 10.1007/s00705-017-3651-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.
Collapse
|
13
|
Barbosa PRR, Michaud JP, Bain CL, Torres JB. Toxicity of three aphicides to the generalist predators Chrysoperla carnea (Neuroptera: Chrysopidae) and Orius insidiosus (Hemiptera: Anthocoridae). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:589-599. [PMID: 28357620 DOI: 10.1007/s10646-017-1792-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Recent widespread infestations of the invasive sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), in sorghum fields in the southern USA have created demand for insecticides that will provide effective control of sugarcane aphid, while conserving those beneficial species that contribute to biological control of the pest. We tested the susceptibility of both adult and immature stages of two aphid predators, the green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and the insidious flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae), to three aphicides, flonicamid, sulfoxaflor and flupyradifurone. Flonicamid was innocuous to both species regardless of life stage or route of exposure. Lacewing adults were more susceptible to sulfoxaflor and flupyradifurone than were larvae, and had higher mortality when fed contaminated honey solution than when contacting residues on an inert surface. When laid in sunflower stems treated with these two materials, eggs of O. insidiosus hatched successfully, but nymphs experienced significant mortality when exposed to treated stems, likely due to phytophagous behavior that resulted in some insecticide ingestion. Despite these impacts, we conclude that both sulfoxaflor and flupyradifurone are likely to be relatively innocuous in comparison to more broad-spectrum insecticides and are thus potentially compatible with biological control and overall management of M. sacchari in grain sorghum.
Collapse
Affiliation(s)
- Paulo R R Barbosa
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, 1232 240th Ave., Hays, KS, 67601, USA.
| | - Clint L Bain
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, 1232 240th Ave., Hays, KS, 67601, USA
| | - Jorge B Torres
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| |
Collapse
|
14
|
|
15
|
Kargiotidou A, Vlachostergios DN, Tzantarmas C, Mylonas I, Foti C, Menexes G, Polidoros A, Tokatlidis IS. Addressing huge spatial heterogeneity induced by virus infections in lentil breeding trials. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2016; 23:2. [PMID: 26933651 PMCID: PMC4772466 DOI: 10.1186/s40709-016-0039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Spatial heterogeneity can have serious effects on the precision of field experimentation in plant breeding. In the present study the capacity of the honeycomb design (HD) to sample huge spatial heterogeneity was appraised. For this purpose, four trials were conducted each comprising a lentil landrace being screened for response to viruses. RESULTS Huge spatial heterogeneity was reflected by the abnormally high values for coefficient of variation (CV) of single-plant yields, ranging 123-162 %. At a given field area, increasing the number of simulated entries was followed by declined effectiveness of the method, on account of the larger circular block implying greater intra-block heterogeneity; a hyperbolic increasing pattern of the top to bottom entry mean gap (TBG) indicated that a number of more than 100 replicates (number of plants per entry) is the crucial threshold to avoid significant deterioration of the sampling degree. Nevertheless, the honeycomb model kept dealing with variation better than the randomized complete block (RCB) pattern, thanks to the circular shape and standardized type of block that ensure the less possible extra heterogeneity with expanding the area of the block. CONCLUSIONS Owing to the even and systematic entry allocation, breeders do not need to be concerned with the extra spatial heterogeneity that might induce the extra surface needed to expand the size of the block when many entries are considered. Instead, they could improve accuracy of comparisons with increasing the number of replicates (circular blocks) despite the concomitant greater overall spatial heterogeneity.
Collapse
Affiliation(s)
- Anastasia Kargiotidou
- Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | | | - Constantinos Tzantarmas
- Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Ioannis Mylonas
- Industrial and Fodder Crops Institute, Hellenic Agricultural Organization, 41335 Larissa, Greece
| | - Chrysanthi Foti
- Industrial and Fodder Crops Institute, Hellenic Agricultural Organization, 41335 Larissa, Greece
| | - George Menexes
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexios Polidoros
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Tokatlidis
- Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| |
Collapse
|
16
|
Hema M, Sreenivasulu P, Patil BL, Kumar PL, Reddy DVR. Tropical food legumes: virus diseases of economic importance and their control. Adv Virus Res 2015; 90:431-505. [PMID: 25410108 DOI: 10.1016/b978-0-12-801246-8.00009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Virology, Sri Venkateswara University, Tirupati, India
| | - Pothur Sreenivasulu
- Formerly Professor of Virology, Sri Venkateswara University, Tirupati, India
| | - Basavaprabhu L Patil
- National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, India
| | - P Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dodla V R Reddy
- Formerly Principal Virologist, ICRISAT, Patancheru, Hyderabad, India.
| |
Collapse
|
17
|
Grigoras I, Ginzo AIDC, Martin DP, Varsani A, Romero J, Mammadov AC, Huseynova IM, Aliyev JA, Kheyr-Pour A, Huss H, Ziebell H, Timchenko T, Vetten HJ, Gronenborn B. Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. J Gen Virol 2014; 95:1178-1191. [DOI: 10.1099/vir.0.063115-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent identification of a new nanovirus, pea necrotic yellow dwarf virus, from pea in Germany prompted us to survey wild and cultivated legumes for nanovirus infections in several European countries. This led to the identification of two new nanoviruses: black medic leaf roll virus (BMLRV) and pea yellow stunt virus (PYSV), each considered a putative new species. The complete genomes of a PYSV isolate from Austria and three BMLRV isolates from Austria, Azerbaijan and Sweden were sequenced. In addition, the genomes of five isolates of faba bean necrotic yellows virus (FBNYV) from Azerbaijan and Spain and those of four faba bean necrotic stunt virus (FBNSV) isolates from Azerbaijan were completely sequenced, leading to the first identification of FBNSV occurring in Europe. Sequence analyses uncovered evolutionary relationships, extensive reassortment and potential remnants of mixed nanovirus infections, as well as intra- and intercomponent recombination events within the nanovirus genomes. In some virus isolates, diverse types of the same genome component (paralogues) were observed, a type of genome complexity not described previously for any member of the family Nanoviridae. Moreover, infectious and aphid-transmissible nanoviruses from cloned genomic DNAs of FBNYV and BMLRV were reconstituted that, for the first time, allow experimental reassortments for studying the genome functions and evolution of these nanoviruses.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Ana Isabel del Cueto Ginzo
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Javier Romero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Alamdar Ch. Mammadov
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Irada M. Huseynova
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Jalal A. Aliyev
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | | | - Herbert Huss
- Lehr- und Forschungszentrum für Landwirtschaft (LFZ) Raumberg-Gumpenstein, Versuchsstation Lambach/Stadl-Paura, 4651 Stadl-Paura, Austria
| | - Heiko Ziebell
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Heinrich-Josef Vetten
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| |
Collapse
|
18
|
Abstract
Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies.
Collapse
|
19
|
Abraham AD, Varrelmann M, Josef Vetten H. Three Distinct Nanoviruses, One of Which Represents a New Species, Infect Faba Bean in Ethiopia. PLANT DISEASE 2012; 96:1045-1053. [PMID: 30727219 DOI: 10.1094/pdis-09-11-0734-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In all, 70 of 296 leaf samples (23.6%) collected from faba bean (Vicia faba) plants showing leaf yellowing and stunting in Ethiopia gave nanovirus-positive reactions when studied by triple-antibody sandwich enzyme-linked immunosorbent assay using broad-spectrum monoclonal antibodies (MAbs) specific to nanoviruses. Further analysis of these samples with seven discriminating MAbs revealed contrasting epitope profiles that were categorized into roughly three serogroups, designated A, B, and C. Serogroup A was found in 89% of the nanovirus-positive samples whereas serogroups B and C were infrequently encountered. Sequence analysis of DNA-S and DNA-U1 of serogroup A, B, and C isolates suggested that each represents a distinct nanovirus species. Serogroup A comprised isolates of Faba bean necrotic stunt virus reported earlier only from Ethiopia and Morocco. The DNA-R, -S, -U1, and -U2 sequences of a serogroup B isolate closely resembled those of Faba bean necrotic yellows virus, providing first molecular evidence for its occurrence in Ethiopia. Sequence analysis of the eight genomic DNAs of a representative serogroup C isolate (Eth-231) showed that it shared overall nucleotide and amino acid sequence identities of only ≤70 and ≤74%, respectively, with other nanoviruses. This suggests that Eth-231 represents a new nanovirus species, for which the name faba bean yellow leaf virus is proposed.
Collapse
Affiliation(s)
- Adane D Abraham
- Holetta Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia; Julius Kühn Institute, Federal Research Center for Cultivated Plants, 38104, Braunschweig, Germany; and Institute for Plant Pathology and Protection, University of Göttingen, 37077 Göttingen, Germany
| | - Mark Varrelmann
- Institute for Sugar Beet Research, University of Göttingen, 37079 Göttingen, Germany
| | - H Josef Vetten
- Julius Kühn Institute, Federal Research Center for Cultivated Plants, Germany
| |
Collapse
|
20
|
Damsteegt VD, Stone AL, Kuhlmann M, Gildow FE, Domier LL, Sherman DJ, Tian B, Schneider WL. Acquisition and Transmissibility of U.S. Soybean dwarf virus Isolates by the Soybean Aphid, Aphis glycines. PLANT DISEASE 2011; 95:945-950. [PMID: 30732111 DOI: 10.1094/pdis-10-10-0726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean dwarf virus (SbDV) exists as several distinct strains based on symptomatology, vector specificity, and host range. Originally characterized Japanese isolates of SbDV were specifically transmitted by Aulacorthum solani. More recently, additional Japanese isolates and endemic U.S. isolates have been shown to be transmitted by several different aphid species. The soybean aphid, Aphis glycines, the only aphid that colonizes soybean, has been shown to be a very inefficient vector of some SbDV isolates from Japan and the United States. Transmission experiments have shown that the soybean aphid can transmit certain isolates of SbDV from soybean to soybean and clover species and from clover to clover and soybean with long acquisition and inoculation access periods. Although transmission of SbDV by the soybean aphid is very inefficient, the large soybean aphid populations that develop on soybean may have epidemiological potential to produce serious SbDV-induced yield losses.
Collapse
Affiliation(s)
- V D Damsteegt
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - A L Stone
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - M Kuhlmann
- Cell Biology & Molecular Genetics, UMD, College Park, MD
| | - F E Gildow
- Department of Plant Pathology, Pennsylvania State University, State College, PA
| | - L L Domier
- USDA-ARS, University of Illinois, Champaign, IL
| | - D J Sherman
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| | - B Tian
- Department of Plant Pathology, Pennsylvania State University, State College, PA
| | - W L Schneider
- Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, MD
| |
Collapse
|
21
|
Chang PGS, McLaughlin WA, Tolin SA. Tissue blot immunoassay and direct RT-PCR of cucumoviruses and potyviruses from the same NitroPure nitrocellulose membrane. J Virol Methods 2010; 171:345-51. [PMID: 21126542 DOI: 10.1016/j.jviromet.2010.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 11/17/2022]
Abstract
A method is described for using Nitropure nitrocellulose (NPN) membranes as an effective solid matrix for retrieval of template RNA of three potyviruses, Tobacco etch virus, Soybean mosaic virus and Turnip mosaic virus, and two cucumoviruses, Cucumber mosaic virus and Peanut stunt virus. These NPN membranes were also used for tissue blot immunosorbent assays (TBIAs) to identify and detect plant viruses. For RNA detection, discs from dried membranes blotted with infected tissue were minimally cleaned with Triton X-100 and placed directly into reverse transcription (RT) reactions to initiate cDNA synthesis. Aliquots of cDNA plus primers specific for coat protein produced PCR amplicons of expected sizes for each of the viruses. Intensity of PCR-amplified bands from cDNA transcribed from both non-processed and TBIA-processed NPN membranes was comparable to those using FTA Card protocols. Direct sequencing of PCR products yielded high quality runs enabling identification to species. NPN membranes retained immunologically detectable virus particles, as well as intact template viral RNA, for more than a year at room temperature. The quantity of amplification product decreased after several months of storage, but could be increased by increasing the number of PCR cycles.
Collapse
Affiliation(s)
- Peta-Gaye S Chang
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
22
|
Thomas JE, Parry JN, Schwinghamer MW, Dann EK. Two novel mastreviruses from chickpea (Cicer arietinum) in Australia. Arch Virol 2010; 155:1777-88. [PMID: 20734091 DOI: 10.1007/s00705-010-0763-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/17/2010] [Indexed: 11/25/2022]
Abstract
Two novel mastreviruses (genus Mastrevirus; family Geminiviridae), with proposed names chickpea chlorosis virus (CpCV) and chickpea redleaf virus, are described from chickpea (Cicer arietinum) from eastern Australia. The viruses have genomes of 2,582 and 2,605 nucleotides, respectively, and share similar features and organisation with typical dicot-infecting mastreviruses. Two distinct strains of CpCV were suggested by phylogenetic analysis. Additionally, a partial mastrevirus Rep sequence from turnip weed (Rapistrum rugosum) indicated the presence of a distinct strain of Tobacco yellow dwarf virus (TYDV). In phylogenetic analyses, isolates of Bean yellow dwarf virus, Chickpea chlorotic dwarf Pakistan virus and Chickpea chlorotic dwarf Sudan virus from southern and northern Africa and south-central and western Asia clustered separately from these three viruses from Australia. An Australian, eastern Asian, or south-eastern Asian origin for the novel mastreviruses and TYDV is discussed.
Collapse
Affiliation(s)
- J E Thomas
- Department of Employment, Brisbane, Australia.
| | | | | | | |
Collapse
|
23
|
Mandal B. Advances in Small Isometric Multicomponent ssDNA Viruses Infecting Plants. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2010; 21:18-30. [PMID: 23637475 PMCID: PMC3550773 DOI: 10.1007/s13337-010-0010-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
Multicomponent ssDNA plant viruses were discovered during 1990s. They are associated with bunchy top, yellowing and dwarfing diseases of several economic plants under family Musaceae, Leguminosae and Zingiberaceae. In the current plant virus taxonomy, these viruses are classified under the family Nanoviridae containing two genera, Nanovirus and Babuvirus. The family Nanoviridae was created with five members in 2005 and by 2010, it has expanded with four additional members. The viruses are distributed in the tropical and subtropical regions of Asia, Australia, Europe and Africa. The viruses are not sap or seed transmissible and are naturally transmitted by aphid vector in a persistent manner. The genome is consisted of several circular ssDNAs of about 1 kb each. Up to 12 DNA components have been isolated from the diseased plant. The major viral proteins encoded by these components are replication initiator protein (Rep), coat protein, cell-cycle link protein, movement protein and a nuclear shuttle protein. Each ssDNA contains a single gene and a noncoding region with a stable stem and loop structure. Several Rep encoding components have been reported from each virus, only one of them designated as master Rep has ability to control replication of the other genomic components. Infectivity of the genomic DNAs was demonstrated only for two nanoviruses, Faba bean necrotic yellows virus and Faba bean necrotic stunt virus (FBNSV). A group of eight ssDNA components of FBNSV were necessary for producing disease and biologically active progeny viruses. So far, infectivity of genomic components of Babuvirus has not been demonstrated.
Collapse
Affiliation(s)
- Bikash Mandal
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
24
|
Abraham AD, Bencharki B, Torok V, Katul L, Varrelmann M, Josef Vetten H. Two distinct nanovirus species infecting faba bean in Morocco. Arch Virol 2009; 155:37-46. [PMID: 20069400 PMCID: PMC3128733 DOI: 10.1007/s00705-009-0548-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/14/2009] [Indexed: 11/27/2022]
Abstract
Using monoclonal antibodies raised against a Faba bean necrotic yellows virus (FBNYV) isolate from Egypt and a Faba bean necrotic stunt virus (FBNSV) isolate from Ethiopia, a striking serological variability among nanovirus isolates from faba bean in Morocco was revealed. To obtain a better understanding of this nanovirus variability in Morocco, the entire genomes of two serologically contrasting isolates referred to as Mor5 and Mor23 were sequenced. The eight circular ssDNA components, each identified from Mor5- and Mor23-infected tissues and thought to form the complete nanovirus genome, ranged in size from 952 to 1,005 nt for Mor5 and from 980 to 1,004 nt for Mor23 and were structurally similar to previously described nanovirus DNAs. However, Mor5 and Mor23 differed from each other in overall nucleotide and amino acid sequences by 25 and 26%, respectively. Mor23 was most closely related to typical FBNYV isolates described earlier from Egypt and Syria, with which it shared a mean amino acid sequence identity of about 94%. On the other hand, Mor5 most closely resembled a FBNSV isolate from Ethiopia, with which it shared a mean amino acid sequence identity of approximately 89%. The serological and genetic differences observed for Mor5 and Mor23 were comparable to those observed earlier for FBNYV, FBNSV, and Milk vetch dwarf virus. Following the guidelines on nanovirus species demarcation, this suggests that Mor23 and Mor5 represent isolates of FBNYV and FBNSV, respectively. This is the first report not only on the presence of FBNSV in a country other than Ethiopia but also on the occurrence and complete genome sequences of members of two nanovirus species in the same country, thus providing evidence for faba bean crops being infected by members of two distinct nanovirus species in a restricted geographic area.
Collapse
Affiliation(s)
- Adane D. Abraham
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
- Biotechnology Program, Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Bouchaib Bencharki
- Faculté des Sciences et Techniques, Université Hassan 1er, P.O. Box 577, Settat, Morocco
| | - Valeria Torok
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Lina Katul
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Mark Varrelmann
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
| | - H. Josef Vetten
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
- Julius Kühn Institute, Federal Research Center for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
25
|
Grigoras I, Timchenko T, Katul L, Grande-Pérez A, Vetten HJ, Gronenborn B. Reconstitution of authentic nanovirus from multiple cloned DNAs. J Virol 2009; 83:10778-87. [PMID: 19656882 PMCID: PMC2753110 DOI: 10.1128/jvi.01212-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022] Open
Abstract
We describe a new plant single-stranded DNA (ssDNA) virus, a nanovirus isolate originating from the faba bean in Ethiopia. We applied rolling circle amplification (RCA) to extensively copy the individual circular DNAs of the nanovirus genome. By sequence analyses of more than 208 individually cloned genome components, we obtained a representative sample of eight polymorphic swarms of circular DNAs, each about 1 kb in size. From these heterogeneous DNA populations after RCA, we inferred consensus sequences of the eight DNA components of the virus genome. Based on the distinctive molecular and biological properties of the virus, we propose to consider it a new species of the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Selecting a representative clone of each of the eight DNAs for transfer by T-DNA plasmids of Agrobacterium tumefaciens into Vicia faba plants, we elicited the development of the typical FBNSV disease symptoms. Moreover, we showed that the virus thus produced was readily transmitted by two different aphid vector species, Aphis craccivora and Acyrthosiphon pisum. This represents the first reconstitution of a fully infectious and sustainably insect-transmissible nanovirus from its cloned DNAs and provides compelling evidence that the genome of a legume-infecting nanovirus is typically comprised of eight distinct DNA components.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|