1
|
Akbaş B, Morca AF, Coşkan S, Santosa AI, Çulal-Kılıç H, Çelik A. First complete sequences and genetic variation of plum pox virus T strain in Prunus dulcis and Prunus cerasus. 3 Biotech 2023; 13:332. [PMID: 37681114 PMCID: PMC10480364 DOI: 10.1007/s13205-023-03746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
The complete genome of plum pox virus strain T isolates from five different Prunus spp., including almond (P. dulcis) and sour cherry (P. ceracus) isolates, was fully sequenced using the primer pairs designed in this study. The five isolates were aligned with other 50 PPV-T isolates whose complete genome sequences were available in GenBank and then subjected to phylogenetic and diversity analyses. Recombination analysis showed no significant signal detected in the five newly sequenced isolates while confirming four recombinant isolates reported in a previous study. Nucleotide and amino acid phylogenetic trees clustered the tested isolates into three major groups: Balkan 1, 2, and 3. Strain T isolates shared high nucleotide and amino acid identities among them. Diversity analysis applied different parameters to found that the sequences of P3 and 6K1 genes were more conserved over other genes. In accordance, the highly variable P1 and CP genes were found to experience weaker purifying pressures, ω = 0.127 and 0.219, respectively, than other genes. The three neutrality tests gave negative values to all genes, suggesting that strain T populations have expanding or bottleneck selections. Genetic make-up of the only known sour cherry isolate is highly identical to isolates from other Prunus spp. Therefore, this study has updated our knowledge of T strain diversity in new hosts and provided a clear picture of genetic variation and host relationships. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03746-1.
Collapse
Affiliation(s)
- Birol Akbaş
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., 06172 Yenimahalle, Ankara Turkey
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., 06172 Yenimahalle, Ankara Turkey
| | - Sevgi Coşkan
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., 06172 Yenimahalle, Ankara Turkey
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, 55281 Yogyakarta, Indonesia
| | - Handan Çulal-Kılıç
- Department of Plant Protection, Faculty of Agriculture, Isparta University of Applied Sciences, 32000 Isparta, Turkey
| | - Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14030 Bolu, Turkey
| |
Collapse
|
2
|
Chirkov S, Sheveleva A, Gasanova T, Kwon D, Sharko F, Osipov G. New Cherry-Adapted Plum Pox Virus Phylogroups Discovered in Russia. PLANT DISEASE 2022; 106:2591-2600. [PMID: 35442710 DOI: 10.1094/pdis-01-22-0006-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) is the most pathogenic virus of stone fruit crops worldwide. Unusual PPV isolates were discovered on sour cherry (Prunus cerasus L.) and steppe cherry (P. fruticosa Pall.) in the Republic of Tatarstan and the Middle Ural region, Russia. They induced typical sharka symptoms and tested positive for PPV by ELISA and RT-PCR, but were not detected by PCR using known strain-specific primers. Their complete genomes were determined using high-throughput sequencing. Phylogenetic analysis allocated new isolates to four clearly distinguished lineages (SC, TAT, Y, Tat-26) within a cluster of PPV cherry-adapted strains. The phylogroups SC and TAT had 84.5 to 86.9% average nucleotide identity to each other and strain CR, with which they comprised a common subcluster. Isolates from the Middle Ural region (group Y) were closer to strain C, sharing 96.9% identity. The fourth lineage is represented by the isolate Tat-26, which was a recombinant of strain CR and C isolates as major and minor parents, respectively. These results show that the genetic diversity of PPV is higher than thought and may contribute to a better understanding of the origin and evolution of cherry-adapted strains of the virus. P. fruticosa was reported as a new natural PPV host for the first time.
Collapse
Affiliation(s)
- Sergei Chirkov
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Anna Sheveleva
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana Gasanova
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Dmitry Kwon
- Genomic Sequencing Facility, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Fedor Sharko
- Laboratory of Bioinformatics and Big Data, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Gennady Osipov
- Department of Agricultural Biotechnology, Tatar Research Institute of Agriculture, Kazan 420059, Russia
| |
Collapse
|
3
|
Zhou J, Xing F, Wang H, Li S. Occurrence, Distribution, and Genomic Characteristics of Plum Pox Virus Isolates from Common Apricot ( Prunus armeniaca) and Japanese Apricot ( Prunus mume) in China. PLANT DISEASE 2021; 105:3474-3480. [PMID: 33858186 DOI: 10.1094/pdis-09-20-1936-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plum pox, or Sharka disease, caused by infection with plum pox virus (PPV), results in enormous economic losses to the stone fruit industry. However, the frequency and distribution of PPV remain unclear in China, the world's largest stone fruit producer. Systemic visual surveys were performed on stone fruit trees in China from 2008 to 2018, and the results suggest that plum pox disease is widely distributed on common apricots (Prunus armeniaca) and Japanese apricots (Prunus mume), with an average symptoms incidence rate >30% in the latter. In samples collected from Beijing, Nanjing, Shanghai, Wuhan, Wuxi, and Yuncheng, PPV was detected in 77% (85 of 110) of collected samples by immunochromatographic (IC) strip tests and reverse transcription PCR, and 96% (67 of 70) of samples showing Sharka symptoms were PPV positive. Transmission electron microscopy revealed filamentous particles of ∼640 × 12.5 nm (n = 19) in size and pinwheel inclusions in symptomatic plants but not in the asymptomatic and PPV-negative plants. Full-length genomes were determined for four isolates (three from Japanese apricot and one from common apricot), and phylogenetic analyses indicated that all four isolates belong to a clade PPV-D, despite slight differences in genome size. These findings not only highlight the widespread occurrence and distribution of PPV in China but also provide detailed information about the genomic characteristics and evolutionary position of PPV isolates in China.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Fei Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongqing Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| |
Collapse
|
4
|
Hajizadeh M, Gibbs AJ, Amirnia F, Glasa M. The global phylogeny o f Plum pox virus is emerging. J Gen Virol 2019; 100:1457-1468. [PMID: 31418674 DOI: 10.1099/jgv.0.001308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 206 complete genomic sequences of Plum pox virus in GenBank (January 2019) were downloaded. Their main open reading frames (ORF)s were compared by phylogenetic and population genetic methods. All fell into the nine previously recognized strain clusters; the PPV-Rec and PPV-T strain ORFs were all recombinants, whereas most of those in the PPV-C, PPV-CR, PPV-CV, PPV-D, PPV-EA, PPV-M and PPV-W strain clusters were not. The strain clusters ranged in size from 2 (PPV-CV and PPV-EA) to 74 (PPV-D). The isolates of eight of the nine strains came solely from Europe and the Levant (with an exception resulting from a quarantine breach), but many PPV-D strain isolates also came from east and south Asia and the Americas. The estimated time to the most recent common ancestor (TMRCA) of all 134 non-recombinant ORFs was 820 (865-775) BCE. Most strain populations were only a few decades old, and had small intra-strain, but large inter-strain, differences; strain PPV-W was the oldest. Eurasia is clearly the 'centre of emergence' of PPV and the several PPV-D strain populations found elsewhere only show evidence of gene flow with Europe, so have come from separate introductions from Europe. All ORFs and their individual genes show evidence of strong negative selection, except the positively selected pipo gene of the recently migrant populations. The possible ancient origins of PPV are discussed.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Adrian J Gibbs
- Emeritus Faculty Australian National University, Canberra, Australia
| | - Fahimeh Amirnia
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
5
|
Chirkov S, Sheveleva A, Ivanov P, Zakubanskiy A. Analysis of Genetic Diversity of Russian Sour Cherry Plum pox virus Isolates Provides Evidence of a New Strain. PLANT DISEASE 2018; 102:569-575. [PMID: 30673474 DOI: 10.1094/pdis-07-17-1104-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plum pox virus (PPV) exists as a complex of nine strains adapted to different Prunus hosts. Unusual PPV isolates that do not belong to the known cherry-adapted strains were discovered on sour cherry in Russia. Here, two complete genomes of isolates Tat-2 and Tat-4 were determined by sequencing on the Illumina HiSeq 2500 platform. Both were composed of 9,792 nucleotides, excluding the poly(A) tail, with the organization typical of PPV and had 99.4 and 99.7% identity between each other at the nucleotide and amino acid levels. The sequence identities between Tat-2/Tat-4 and known PPV strains ranged from 77.6 to 83.3% for genomic RNA and from 80.0 to 93.8% for polyprotein. Phylogenetic analysis placed Tat-2 and Tat-4 in a separate clade, distinct from the C and CR strains. Three more Tat-2/Tat-4-like isolates were detected in local cherry plantings using the newly developed, specific RT-PCR assay. Based on the phylogenetic analysis, sequence identities, and environmental distribution, Tat-2, Tat-4, and related isolates represent a new cherry-adapted PPV strain for which the name PPV-CV (Cherry Volga) is proposed.
Collapse
Affiliation(s)
- Sergei Chirkov
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna Sheveleva
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Peter Ivanov
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
6
|
Chirkov S, Ivanov P, Sheveleva A, Kudryavtseva A, Mitrofanova I. Molecular characterization of Plum pox virus Rec isolates from Russia suggests a new insight into evolution of the strain. Virus Genes 2018; 54:328-332. [PMID: 29460128 DOI: 10.1007/s11262-018-1541-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/11/2018] [Indexed: 11/29/2022]
Abstract
Field isolates of Plum pox virus (PPV), belonging to the strain Rec, have been found for the first time in Russia. Full-size genomes of the isolates K28 and Kisl-1pl from myrobalan and plum, respectively, were sequenced on the 454 platform. Analysis of all known PPV-Rec complete genomes using the Recombination Detection Program (RDP4) revealed yet another recombination event in the 5'-terminal region. This event was detected by seven algorithms, implemented in the RDP4, with statistically significant P values and supported by a phylogenetic analysis with the bootstrap value of 87%. A putative PPV-M-derived segment, encompassing the C-terminus of the P1 gene and approximately two-thirds of the HcPro gene, is bordered by breakpoints at positions 760-940 and 1838-1964, depending on the recombinant isolate. The predicted 5'-distal breakpoint for the isolate Valjevka is located at position 2804. The Dideron (strain D) and SK68 (strain M) isolates were inferred as major and minor parents, respectively. Finding of another recombination event suggests more complex evolutionary history of PPV-Rec than previously assumed. Perhaps the first recombination event led to the formation of a PPV-D variant harboring the PPV-M-derived fragment within the 5'-proximal part of the genome. Subsequent recombination of its descendant with PPV-M in the 3'-proximal genomic region resulted in the emergence of the evolutionary successful strain Rec.
Collapse
Affiliation(s)
- Sergei Chirkov
- Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Peter Ivanov
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna Sheveleva
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Irina Mitrofanova
- Nikita Botanical Gardens - National Scientific Center, Yalta, 298648, Russia
| |
Collapse
|
7
|
James D, Sanderson D, Varga A, Sheveleva A, Chirkov S. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events. PHYTOPATHOLOGY 2016; 106:407-416. [PMID: 26667187 DOI: 10.1094/phyto-09-15-0211-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.
Collapse
Affiliation(s)
- Delano James
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Dan Sanderson
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Aniko Varga
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Anna Sheveleva
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| | - Sergei Chirkov
- First, second, and third authors: Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, British Columbia, V8L 1H3, Canada; and fourth and fifth authors: Department of Virology, Biology Faculty, Lomonosov Moscow State University, Leninskie Gory MSU 1/12, Moscow, 119991, Russia
| |
Collapse
|
8
|
Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses. Virus Genes 2014; 50:79-86. [PMID: 25392089 DOI: 10.1007/s11262-014-1142-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
Abstract
Recombination among RNA viruses is a natural phenomenon that appears to have played a significant role in the species development and the evolution of many strains. It also has particular significance for the risk assessment of plants which have been genetically modified for disease resistance by incorporating viral sequences into their genomes. However, the exact recombination events taking place in viral genomes are not investigated in detail for many virus groups. In this analysis, different single-stranded positive-sense RNA potyviruses were compared using various in silico recombination detection methods and new recombination events in the Sugarcane mosaic virus (SCMV) subgroup were detected. For an extended in silico recombination analysis, two of the analyzed Maize dwarf mosaic virus full-length genomes were sequenced additionally during this work. These results strengthen the evidence that recombination is a major driving force in virus evolution, and the emergence of new virus variants in the SCMV subgroup, paired with mutations, could generate viruses with altered biological properties. The intra- and interspecific homolog recombinations seem to be a general trait in this virus group, causing little or no changes to the amino acid of the progenies. However, we found a few breakpoints between the members of SCMV subgroup and the weed-infecting distant relatives, but only a few methods of the RDP3 package predicted these events with low significance level.
Collapse
|
9
|
Zhang S, Ravelonandro M, Russell P, McOwen N, Briard P, Bohannon S, Vrient A. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification. J Virol Methods 2014; 207:114-20. [PMID: 25010790 DOI: 10.1016/j.jviromet.2014.06.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Plum pox virus (PPV) causes the most destructive viral disease known as plum pox or Sharka disease in stone fruit trees. As an important regulated pathogen, detection of PPV is thus of critical importance to quarantine and eradication of the spreading disease. In this study, the innovative development of two AmplifyRP(®) tests is reported for a rapid isothermal detection of PPV using reverse transcription-recombinase polymerase amplification. In an AmplifyRP(®) test, all specific recombination and amplification reactions occur at a constant temperature without thermal cycling and the test results are either recorded in real-time with a portable fluorescence reader or displayed using a lateral flow strip contained inside an amplicon detection chamber. The major improvement of this assay is that the entire test from sample preparation to result can be completed in as little as 20min and can be performed easily both in laboratories and in the field. The results from this study demonstrated the ability of the AmplifyRP(®) technique to detect all nine PPV strains (An, C, CR, D, EA, M, Rec, T, or W). Among the economic benefits to pathogen surveys is the higher sensitivity of the AmplifyRP(®) to detect PPV when compared to the conventional ELISA and ImmunoStrip(®) assays. This is the first report describing the use of such an innovative technique to detect rapidly plant viruses affecting perennial crops.
Collapse
Affiliation(s)
- Shulu Zhang
- Agdia Inc., 52642 County Road 1, Elkhart, IN 46514, USA.
| | - Michel Ravelonandro
- UMR-1332, Biologie du Fruit et Pathologie, Virologie, INRA-Bordeaux, BP-81, CS20032, Villenave d'Ornon 33882, France
| | - Paul Russell
- Agdia Inc., 52642 County Road 1, Elkhart, IN 46514, USA
| | - Nathan McOwen
- Agdia Inc., 52642 County Road 1, Elkhart, IN 46514, USA
| | - Pascal Briard
- UMR-1332, Biologie du Fruit et Pathologie, Virologie, INRA-Bordeaux, BP-81, CS20032, Villenave d'Ornon 33882, France
| | | | - Albert Vrient
- Agdia Inc., 52642 County Road 1, Elkhart, IN 46514, USA
| |
Collapse
|
10
|
Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to plum pox virus infection. PLoS One 2014; 9:e100477. [PMID: 24959894 PMCID: PMC4069073 DOI: 10.1371/journal.pone.0100477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/25/2014] [Indexed: 12/03/2022] Open
Abstract
Plum pox virus (PPV) infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named ‘Jojo’, develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected ‘Jojo’ trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01). Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.
Collapse
|
11
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Calvo M, Malinowski T, García JA. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:136-49. [PMID: 24200075 DOI: 10.1094/mpmi-08-13-0242-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.
Collapse
|
13
|
Glasa M, Prikhodko Y, Predajňa L, Nagyová A, Shneyder Y, Zhivaeva T, Subr Z, Cambra M, Candresse T. Characterization of sour cherry isolates of plum pox virus from the Volga Basin in Russia reveals a new cherry strain of the virus. PHYTOPATHOLOGY 2013; 103:972-9. [PMID: 23581702 DOI: 10.1094/phyto-11-12-0285-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plum pox virus (PPV) is the causal agent of sharka, the most detrimental virus disease of stone fruit trees worldwide. PPV isolates have been assigned into seven distinct strains, of which PPV-C regroups the genetically distinct isolates detected in several European countries on cherry hosts. Here, three complete and several partial genomic sequences of PPV isolates from sour cherry trees in the Volga River basin of Russia have been determined. The comparison of complete genome sequences has shown that the nucleotide identity values with other PPV isolates reached only 77.5 to 83.5%. Phylogenetic analyses clearly assigned the RU-17sc, RU-18sc, and RU-30sc isolates from cherry to a distinct cluster, most closely related to PPV-C and, to a lesser extent, PPV-W. Based on their natural infection of sour cherry trees and genomic characterization, the PPV isolates reported here represent a new strain of PPV, for which the name PPV-CR (Cherry Russia) is proposed. The unique amino acids conserved among PPV-CR and PPV-C cherry-infecting isolates (75 in total) are mostly distributed within the central part of P1, NIa, and the N terminus of the coat protein (CP), making them potential candidates for genetic determinants of the ability to infect cherry species or of adaptation to these hosts. The variability observed within 14 PPV-CR isolates analyzed in this study (0 to 2.6% nucleotide divergence in partial CP sequences) and the identification of these isolates in different localities and cultivation conditions suggest the efficient establishment and competitiveness of the PPV-CR in the environment. A specific primer pair has been developed, allowing the specific reverse-transcription polymerase chain reaction detection of PPV-CR isolates.
Collapse
Affiliation(s)
- Miroslav Glasa
- Institute of Virology, Department of Plant Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sheveleva A, Kudryavtseva A, Speranskaya A, Belenikin M, Melnikova N, Chirkov S. Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing. Virus Genes 2013; 47:385-8. [PMID: 23813250 DOI: 10.1007/s11262-013-0946-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/19/2013] [Indexed: 11/30/2022]
Abstract
The near-complete (99.7 %) genome sequence of a novel Russian Plum pox virus (PPV) isolate Pk, belonging to the strain Winona (W), has been determined by 454 pyrosequencing with the exception of the thirty-one 5'-terminal nucleotides. This region was amplified using 5'RACE kit and sequenced by the Sanger method. Genomic RNA released from immunocaptured PPV particles was employed for generation of cDNA library using TransPlex Whole transcriptome amplification kit (WTA2, Sigma-Aldrich). The entire Pk genome has identity level of 92.8-94.5 % when compared to the complete nucleotide sequences of other PPV-W isolates (W3174, LV-141pl, LV-145bt, and UKR 44189), confirming a high degree of variability within the PPV-W strain. The isolates Pk and LV-141pl are most closely related. The Pk has been found in a wild plum (Prunus domestica) in a new region of Russia indicating widespread dissemination of the PPV-W strain in the European part of the former USSR.
Collapse
Affiliation(s)
- Anna Sheveleva
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Chirkov S, Ivanov P, Sheveleva A. Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry. Arch Virol 2013; 158:1383-7. [PMID: 23404462 DOI: 10.1007/s00705-013-1630-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.
Collapse
Affiliation(s)
- Sergei Chirkov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119991, Russia.
| | | | | |
Collapse
|
16
|
Wang X, Kohalmi SE, Svircev A, Wang A, Sanfaçon H, Tian L. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS One 2013; 8:e50627. [PMID: 23382802 PMCID: PMC3557289 DOI: 10.1371/journal.pone.0050627] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/23/2012] [Indexed: 01/29/2023] Open
Abstract
Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Antonet Svircev
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
17
|
Mavrodieva V, James D, Williams K, Negi S, Varga A, Mock R, Levy L. Molecular Analysis of a Plum pox virus W Isolate in Plum Germplasm Hand Carried into the USA from the Ukraine Shows a Close Relationship to a Latvian Isolate. PLANT DISEASE 2013; 97:44-52. [PMID: 30722258 DOI: 10.1094/pdis-01-12-0104-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four of 19 Prunus germplasm accessions hand carried from the Ukraine into the United States without authorization were found to be infected with Plum pox virus (PPV). Of the three isolates characterized, isolates UKR 44189 and UKR 44191 were confirmed to be isolates of PPV strain W, and UKR 44188 was confirmed to be an isolate of PPV strain D. UKR 44189 and UKR 44191 are very closely related to the PPV strain W isolate LV-145bt (HQ670748) from Latvia. Nucleotide and amino acid sequence identities between these three isolates were greater than 99%. This indicates that the isolates are very closely related and likely originated from a common source. The high genetic diversity among PPV-W strain isolates allowed the identification of potential recombination events between PPV isolates. It appears also that GF 305 peach and Prunus tomentosa are not hosts for the PPV isolate UKR 44189.
Collapse
Affiliation(s)
- Vessela Mavrodieva
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS), Plant Protection and Quarantine (PPQ), Center for Plant Health Science and Technology (CPHST) Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Delano James
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Karen Williams
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Sarika Negi
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Aniko Varga
- Sidney Laboratory, CFIA, 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Ray Mock
- USDA, Agricultural Research Service, National Germplasm Resources Laboratory, 10300 Baltimore Ave., Beltsville, MD, USA
| | - Laurene Levy
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| |
Collapse
|
18
|
Sochor J, Babula P, Adam V, Krska B, Kizek R. Sharka: the past, the present and the future. Viruses 2012; 4:2853-901. [PMID: 23202508 PMCID: PMC3509676 DOI: 10.3390/v4112853] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic;
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
19
|
Sheveleva A, Ivanov P, Prihodko Y, James D, Chirkov S. Occurrence and Genetic Diversity of Winona-Like Plum pox virus Isolates in Russia. PLANT DISEASE 2012; 96:1135-1142. [PMID: 30727054 DOI: 10.1094/pdis-12-11-1045-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In studying the distribution and genetic diversity of Plum pox virus (PPV) in Russia, over a dozen new PPV isolates belonging to the strain Winona (PPV-W) were identified by immunocapture reverse-transcription polymerase chain reaction with the PPV-W-specific primers 3174-SP-F3/3174-SP-R1. Isolates were detected in two geographically distant regions of European Russia (Northern Caucasus and Moscow regions) in naturally infected plum (Prunus domestica), blackthorn (P. spinosa), Canadian plum (P. nigra), and downy cherry (P. tomentosa). The new PPV-W isolates were shown to be serologically related but not identical by triple-antibody sandwich enzyme-linked immunosorbent assay and Western blotting analysis using the monoclonal antibody (MAb) 5B-IVIA and MAbs specific to the N-terminal epitopes of PPV-W isolate 3174. Analysis of nucleotide and deduced amino acid sequences of the (C-ter)NIb-(N-ter)CP genome region indicate great genetic diversity among isolates, with phylogenetic analysis revealing seven clades. Isolates P1 and P3 found in plum in the south of Russia clustered closely with the putative ancestral PPV-W isolate LV-145bt from Latvia, while isolate 1410-7 found in P. nigra in Moscow appears to be closely related to the Canadian isolate W3174. The data obtained indicate wide dissemination of PPV-W isolate in stone fruit in the European part of the former USSR.
Collapse
Affiliation(s)
- Anna Sheveleva
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow
| | - Peter Ivanov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow
| | - Yuri Prihodko
- All-Russian Plant Quarantine Center, Moscow region, Russia
| | - Delano James
- Sidney Laboratory-Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Sergei Chirkov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
20
|
Glasa M, Malinowski T, Predajňa L, Pupola N, Dekena D, Michalczuk L, Candresse T. Sequence variability, recombination analysis, and specific detection of the W strain of Plum pox virus. PHYTOPATHOLOGY 2011; 101:980-985. [PMID: 21425932 DOI: 10.1094/phyto-12-10-0334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plum pox virus (PPV), a member of the genus Potyvirus, is the causal agent of Sharka, the most detrimental disease of stone-fruit trees worldwide. PPV isolates are grouped into seven distinct strains. The minor PPV-W strain was established recently for the divergent W3174 isolate found in Canada. Here, the partial or complete genomic sequences of four PPV-W isolates from Latvia have been determined. The completely sequenced isolates LV-141pl and LV-145bt share 93.1 and 92.1% nucleotide identity, respectively, with isolate W3174, with two regions of higher (>20%) divergence in the P1/HC-Pro and NIa (VPg) regions. Further analyses demonstrated that these two regions correspond to two independent recombination events in the W3174 genome, one involving PPV-M (approximate genome positions 692 to 1424) and the other PPV-D (nucleotides 5672 to 5789). The LV-141pl and LV-145bt isolates appear to be representatives of the "ancestral" PPV-W strain, not affected by recombination. The PPV-W intrastrain variability is substantially higher than that of all other PPV strains, with potential implications for the serological detection of PPV-W isolates. A PPV-W-specific primer pair has been developed, allowing the specific reverse-transcription polymerase chain reaction detection of all five presently available W isolates. The characterization of these new PPV-W isolates sheds light on PPV-W evolutionary history, further supports the hypothesis of its East-European origin, and opens the way for the biological and epidemiological characterization of this poorly known PPV strain.
Collapse
Affiliation(s)
- Miroslav Glasa
- Institute of Virology, Department of Plant Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Schneider WL, Damsteegt VD, Gildow FE, Stone AL, Sherman DJ, Levy LE, Mavrodieva V, Richwine N, Welliver R, Luster DG. Molecular, ultrastructural, and biological characterization of Pennsylvania isolates of Plum pox virus. PHYTOPATHOLOGY 2011; 101:627-636. [PMID: 21261466 DOI: 10.1094/phyto-09-10-0256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plum pox virus (PPV) was identified in Pennsylvania in 1999. The outbreak was limited to a four-county region in southern Pennsylvania. Initial serological and molecular characterization indicated that the isolates in Pennsylvania belong to the D strain of PPV. The Pennsylvania isolates were characterized by sequence analysis, electron microscopy, host range, and vector transmission to determine how these isolates related to their previously studied European counterparts. Genetically, Pennsylvania (PPV-Penn) isolates were more closely related to each other than to any other PPV-D strains, and isolates from the United States, Canada, and Chile were more closely related to each other than to European isolates. The PPV-Penn isolates exist as two clades, suggesting the possibility of multiple introductions. Electron microscopy analysis of PPV-Penn isolates, including cytopathological studies, indicated that the virions were similar to other Potyvirus spp. PPV-Penn isolates had a herbaceous host range similar to that of European D isolates. There were distinct differences in the transmission efficiencies of the two PPV-Penn isolates using Myzus persicae and Aphis spiraecola as vectors; however, both PPV-Penn isolates were transmitted by M. persicae more efficiently than a European D isolate but less efficiently than a European M isolate.
Collapse
Affiliation(s)
- William L Schneider
- United States Department of Agriculture, Agricultural Research Service, Ft. Detrick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Candresse T, Saenz P, García JA, Boscia D, Navratil M, Gorris MT, Cambra M. Analysis of the epitope structure of Plum pox virus coat protein. PHYTOPATHOLOGY 2011; 101:611-619. [PMID: 21171886 DOI: 10.1094/phyto-10-10-0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Typing of the particular Plum pox virus (PPV) strain responsible in an outbreak has important practical implications and is frequently performed using strain-specific monoclonal antibodies (MAbs). Analysis in Western blots of the reactivity of 24 MAbs to a 112-amino-acid N-terminal fragment of the PPV coat protein (CP) expressed in Escherichia coli showed that 21 of the 24 MAbs recognized linear or denaturation-insensitive epitopes. A series of eight C-truncated CP fragments allowed the mapping of the epitopes recognized by the MAbs. In all, 14 of them reacted to the N-terminal hypervariable region, defining a minimum of six epitopes, while 7 reacted to the beginning of the core region, defining a minimum of three epitopes. Sequence comparisons allowed the more precise positioning of regions recognized by several MAbs, including those recognized by the 5B-IVIA universal MAb (amino acids 94 to 100) and by the 4DG5 and 4DG11 D serogroup-specific MAbs (amino acids 43 to 64). A similar approach coupled with infectious cDNA clone mutagenesis showed that a V74T mutation in the N-terminus of the CP abolished the binding of the M serogroup-specific AL MAb. Taken together, these results provide a detailed positioning of the epitopes recognized by the most widely used PPV detection and typing MAbs.
Collapse
|
23
|
Maejima K, Himeno M, Komatsu K, Takinami Y, Hashimoto M, Takahashi S, Yamaji Y, Oshima K, Namba S. Molecular epidemiology of Plum pox virus in Japan. PHYTOPATHOLOGY 2011; 101:567-574. [PMID: 21198358 DOI: 10.1094/phyto-10-10-0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.
Collapse
Affiliation(s)
- Kensaku Maejima
- Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dallot S, Glasa M, Jevremovic D, Kamenova I, Paunovic S, Labonne G. Mediterranean and central-eastern European countries host viruses of two different clades of plum pox virus strain M. Arch Virol 2011; 156:539-42. [DOI: 10.1007/s00705-011-0918-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/12/2011] [Indexed: 11/28/2022]
|
25
|
Di Nicola-Negri E, Tavazza M, Salandri L, Ilardi V. Silencing of Plum pox virus 5'UTR/P1 sequence confers resistance to a wide range of PPV strains. PLANT CELL REPORTS 2010; 29:1435-44. [PMID: 20963442 DOI: 10.1007/s00299-010-0933-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/09/2010] [Accepted: 09/24/2010] [Indexed: 05/03/2023]
Abstract
An effective disease-control strategy should protect the host from the major economically important and geographically widespread variants of a pathogen. Plum pox virus (PPV) is the causal agent of sharka, the most devastating viral disease of Prunus species. We have shown previously that the hairpin RNA expression driven by h-UTR/P1, h-P1/HCPro, h-HCPro and h-HCPro/P3 constructs, derived from the PPV-M ISPaVe44 isolate, confers resistance to the homologous virus in Nicotiana benthamiana plants. Since the production of transgenic stone fruits and their evaluation for PPV resistance would take several years, the ISPaVe44-resistant plant lines were used to evaluate which construct would be the best candidate to be transferred to Prunus elite cultivars. To do that, nine PPV isolates of the D, M, Rec, EA and C strains originally collected from five Prunus species in different geographical areas, were typed by sequencing and used to challenge the transgenic N. benthamiana lines; 464 out of 464 virus-inoculated plants of lines h-UTR/P1, h-HCPro and h-HCPro/P3 showed complete and long-lasting resistance to the seven PPV isolates of D, M and Rec strains. Moreover, the h-UTR/P1 plants were also fully resistant to PPV-C and -EA isolates. Our data suggest that the h-UTR/P1 construct is of particular practical interest to obtain stone fruit plants resistant to the sharka disease.
Collapse
|
26
|
A single amino acid mutation alters the capsid protein electrophoretic double-band phenotype of the Plum pox virus strain PPV-Rec. Arch Virol 2010; 155:1151-5. [DOI: 10.1007/s00705-010-0677-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/26/2010] [Indexed: 11/26/2022]
|