1
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Chen P, Li Z, Cui S. Picornaviral 2C proteins: A unique ATPase family critical in virus replication. Enzymes 2021; 49:235-264. [PMID: 34696834 DOI: 10.1016/bs.enz.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 2C proteins of Picornaviridae are unique members of AAA+ protein family. Although picornavirus 2C shares many conserved motifs with Super Family 3 DNA helicases, duplex unwinding activity of many 2C proteins remains undetected, and high-resolution structures of 2C hexamers are unavailable. All characterized 2C proteins exhibit ATPase activity, but the purpose of ATP hydrolysis is not fully understood. 2C is highly conserved among picornaviruses and plays crucial roles in nearly all steps of the virus lifecycle. It is therefore considered as an effective target for broad-spectrum antiviral drug development. Crystallographic investigation of enterovirus 2C proteins provide structural details important for the elucidation of 2C function and development of antiviral drugs. This chapter summarizes not only the findings of enzymatic activities, biochemical and structural characterizations of the 2C proteins, but also their role in virus replication, immune evasion and morphogenesis. The linkage between structure and function of the 2C proteins is discussed in detail. Inhibitors targeting the 2C proteins are also summarized to provide an overview of drug development. Finally, we raise several key questions to be addressed in this field and provide future research perspective on this unique class of ATPases.
Collapse
Affiliation(s)
- Pu Chen
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijian Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Cui
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Upfold N, Ross C, Bishop ÖT, Luke GA, Knox C. The generation and characterisation of neutralising antibodies against the Theiler’s murine encephalomyelitis virus (TMEV) GDVII capsid reveals the potential binding site of the host cell co-receptor, heparan sulfate. Virus Res 2018; 244:153-163. [DOI: 10.1016/j.virusres.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022]
|
4
|
Ross C, Upfold N, Luke GA, Bishop ÖT, Knox C. Subcellular localisation of Theiler's murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-á-vis host protein Hsp90. Virus Res 2016; 222:53-63. [PMID: 27269472 DOI: 10.1016/j.virusres.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 01/25/2023]
Abstract
The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy. At 5h post infection, VP1 was distributed diffusely in the cytoplasm with strong perinuclear staining but was absent from the nucleus of all cells analysed. Dual-label immunofluorescence using anti-TMEV VP1 and anti-Hsp90 antibodies indicated that the distribution of both proteins colocalised in the cytoplasm and perinuclear region of infected cells. This is the first report describing the localisation of TMEV VP1 in infected cells, and the antibodies produced provide a valuable tool for investigating the poorly understood mechanisms underlying the early steps of picornavirus assembly.
Collapse
Affiliation(s)
- Caroline Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Nicole Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St. Andrews, North Haugh, St. Andrews, Scotland KY16 9ST, UK
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
5
|
Abstract
The encephalomyocarditis virus (EMCV) is a small non-enveloped single-strand RNA virus, the causative agent of not only myocarditis and encephalitis, but also neurological diseases, reproductive disorders and diabetes in many mammalian species. EMCV pathogenesis appears to be viral strain- and host-specific, and a better understanding of EMCV virulence factors is increasingly required. Indeed, EMCV is often used as a model for diabetes and viral myocarditis, and is also widely used in immunology as a double-stranded RNA stimulus in the study of Toll-like as well as cytosolic receptors. However, EMCV virulence and properties have often been neglected. Moreover, EMCV is able to infect humans albeit with a low morbidity. Progress on xenografts, such as pig heart transplantation in humans, has raised safety concerns that need to be explored. In this review we will highlight the biology of EMCV and all known and potential virulence factors.
Collapse
Affiliation(s)
- Margot Carocci
- Microbiology Immunology Department, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
6
|
Mutsvunguma LZ, Moetlhoa B, Edkins AL, Luke GA, Blatch GL, Knox C. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin. Cell Stress Chaperones 2011; 16:505-15. [PMID: 21445704 PMCID: PMC3156266 DOI: 10.1007/s12192-011-0262-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.
Collapse
Affiliation(s)
- Lorraine Z. Mutsvunguma
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Boitumelo Moetlhoa
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Garry A. Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST UK
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Caroline Knox
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| |
Collapse
|
7
|
Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, Belsham GJ, Curry S. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J Biol Chem 2010; 285:24347-59. [PMID: 20507978 PMCID: PMC2915670 DOI: 10.1074/jbc.m110.129940] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jauka T, Mutsvunguma L, Boshoff A, Edkins AL, Knox C. Localisation of Theiler's murine encephalomyelitis virus protein 2C to the Golgi apparatus using antibodies generated against a peptide region. J Virol Methods 2010; 168:162-9. [PMID: 20471424 DOI: 10.1016/j.jviromet.2010.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 11/15/2022]
Abstract
The picornavirus 2C protein is highly conserved and indispensible for virus replication. Polyclonal antibodies against Theiler's murine encephalomyelitis virus (TMEV) 2C protein were generated by immunisation of rabbits with a peptide comprising amino acids 31-210 of the protein. Antibodies were used to investigate the localisation of 2C in infected cells by indirect immunofluorescence and confocal microscopy. Analysis of infected cells revealed that the distribution of 2C changed during infection. Early on, the protein was localised in the perinuclear region with punctate staining in the cytoplasm and at later stages, it was concentrated in one large structure in close proximity to the nucleus and occupying almost 50% of the cell size. Dual-label immunofluorescence using wheat germ agglutinin (WGA) and anti-TMEV 2C antibodies suggested that 2C, and therefore virus replication, is targeted to the Golgi apparatus. At late stages of infection Golgi staining was dispersed, indicating potential reorganisation of membranes. Infection was accompanied by "rounding up" of the cells and a redistribution of actin around the putative replication complex. The results suggest that TMEV behaves similarly to FMDV which also forms replication complexes in the perinuclear region.
Collapse
Affiliation(s)
- Tembisa Jauka
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | | | | | | | | |
Collapse
|