1
|
Huang Y, Jin XJ, Zhang CY, Li P, Meng HH, Zhang YH. Plastome evolution of Engelhardia facilitates phylogeny of Juglandaceae. BMC PLANT BIOLOGY 2024; 24:634. [PMID: 38971744 PMCID: PMC11227234 DOI: 10.1186/s12870-024-05293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Engelhardia (Juglandaceae) is a genus of significant ecological and economic importance, prevalent in the tropics and subtropics of East Asia. Although previous efforts based on multiple molecular markers providing profound insights into species delimitation and phylogeography of Engelhardia, the maternal genome evolution and phylogeny of Engelhardia in Juglandaceae still need to be comprehensively evaluated. In this study, we sequenced plastomes from 14 samples of eight Engelhardia species and the outgroup Rhoiptelea chiliantha, and incorporated published data from 36 Juglandaceae and six outgroup species to test phylogenetic resolution. Moreover, comparative analyses of the plastomes were conducted to investigate the plastomes evolution of Engelhardia and the whole Juglandaceae family. RESULTS The 13 Engelhardia plastomes were highly similar in genome size, gene content, and order. They exhibited a typical quadripartite structure, with lengths from 161,069 bp to 162,336 bp. Three mutation hotspot regions (TrnK-rps16, ndhF-rpl32, and ycf1) could be used as effective molecular markers for further phylogenetic analyses and species identification. Insertion and deletion (InDels) may be an important driving factor for the evolution of plastomes in Juglandoideae and Engelhardioideae. A total of ten codons were identified as the optimal codons in Juglandaceae. The mutation pressure mostly contributed to shaping codon usage. Seventy-eight protein-coding genes in Juglandaceae experienced relaxed purifying selection, only rpl22 and psaI genes showed positive selection (Ka/Ks > 1). Phylogenetic results fully supported Engelhardia as a monophyletic group including two sects and the division of Juglandaceae into three subfamilies. The Engelhardia originated in the Late Cretaceous and diversified in the Late Eocene, and Juglandaceae originated in the Early Cretaceous and differentiated in Middle Cretaceous. The phylogeny and divergence times didn't support rapid radiation occurred in the evolution history of Engelhardia. CONCLUSION Our study fully supported the taxonomic treatment of at the section for Engelhardia species and three subfamilies for Juglandaceae and confirmed the power of phylogenetic resolution using plastome sequences. Moreover, our results also laid the foundation for further studying the course, tempo and mode of plastome evolution of Engelhardia and the whole Juglandaceae family.
Collapse
Affiliation(s)
- Yue Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Can-Yu Zhang
- Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Yong-Hua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
3
|
Zhang C, Liu H, Huang X, Yuan Z, Zhang S, Xu S, Liu J, Wang Y, Wang D, Hu J. Comparative Analysis of the Systematics and Evolution of the Pampus Genus of Fish (Perciformes: Stromateidae) Based on Osteology, Population Genetics and Complete Mitogenomes. Animals (Basel) 2024; 14:814. [PMID: 38473197 DOI: 10.3390/ani14050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Pampus is a widespread species of fish in the western Pacific and Indian Oceans that has significant commercial worth. Its evolutionary history and phylogenetics are still poorly understood, and details on its intraspecific taxonomy are debatable, despite some morphological and molecular research. Here, we analyzed this species using skeletal structure data as well as nuclear (S7 gene) and mitochondrial genetic information (COI, D-loop and mitogenomes). We found that the genetic distance between P. argenteus and P. echinogaster was much smaller than that between other Pampus species, and both maximum likelihood and Bayesian phylogenetic trees yielded almost identical tree topologies. An additional and adjacent M repeat was found in the downstream region of the IQM gene cluster of P. argenteus and P. echinogaster, and the trnL2 gene of P. minor was translocated. The genus Pampus experienced early rapid radiation during the Palaeocene with major lineages diversifying within a relatively narrow timescale. Additionally, three different methods were conducted to distinguish the genus Pampus species, proving that P. argenteus and P. echinogaster are the same species, and P. liuorum is speculated to be a valid species. Overall, our study provides new insights not only into the evolutionary history of Pampus but its intraspecific taxonomy as well.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Hanjing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiang Huang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zi Yuan
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Shun Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Shanliang Xu
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Jing Liu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yajun Wang
- School of Marine Science, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Danli Wang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Jiabao Hu
- School of Marine Science, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Noor F, Ashfaq UA, Bakar A, Qasim M, Masoud MS, Alshammari A, Alharbi M, Riaz MS. Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Front Immunol 2023; 14:1131647. [PMID: 37492567 PMCID: PMC10364125 DOI: 10.3389/fimmu.2023.1131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Rahman SU, Rehman HU, Rahman IU, Khan MA, Rahim F, Ali H, Chen D, Ma W. Evolution of codon usage in Taenia saginata genomes and its impact on the host. Front Vet Sci 2023; 9:1021440. [PMID: 36713873 PMCID: PMC9875090 DOI: 10.3389/fvets.2022.1021440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The beef tapeworm, also known as Taenia saginata, is a zoonotic tapeworm from the genus Taenia in the order Cyclophyllidea. Taenia saginata is a food-borne zoonotic parasite with a worldwide distribution. It poses serious health risks to the host and has a considerable negative socioeconomic impact. Previous studies have explained the population structure of T. saginata within the evolutionary time scale and adaptive evolution. However, it is still unknown how synonymous codons are used by T. saginata. In this study, we used 90 T. saginata strains, applying the codon usage bias (CUB). Both base content and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in the genome of T. saginata. Further low CUB was observed from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection was involved in the structuring of CUB in T. saginata. Further analysis showed that T. saginata has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Generally, both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in T. saginata. This study is important because it characterized the codon usage pattern in the T. saginata genomes and provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Muazzam Ali Khan
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China,*Correspondence: Wentao Ma ✉
| |
Collapse
|
6
|
Rahman SU, Rehman HU, Rahman IU, Rauf A, Alshammari A, Alharbi M, Haq NU, Suleria HAR, Raza SHA. Analysis of codon usage bias of lumpy skin disease virus causing livestock infection. Front Vet Sci 2022; 9:1071097. [PMID: 36544551 PMCID: PMC9762553 DOI: 10.3389/fvets.2022.1071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes lumpy skin disease (LSD) in livestock, which is a double-stranded DNA virus that belongs to the genus Capripoxvirus of the family Poxviridae. LSDV is an important poxvirus that has spread out far and wide to become distributed worldwide. It poses serious health risks to the host and causes considerable negative socioeconomic impact on farmers financially and on cattle by causing ruminant-related diseases. Previous studies explained the population structure of the LSDV within the evolutionary time scale and adaptive evolution. However, it is still unknown and remains enigmatic as to how synonymous codons are used by the LSDV. Here, we used 53 LSDV strains and applied the codon usage bias (CUB) analysis to them. Both the base content and the relative synonymous codon usage (RSCU) analysis revealed that the AT-ended codons were more frequently used in the genome of LSDV. Further low codon usage bias was calculated from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection played a role in the structuring of CUB in LSDV. Additionally, the results from a comparative analysis suggested that the LSDV has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in LSDV. This study is important because it has characterized the codon usage pattern in the LSDV genomes and has provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan,*Correspondence: Siddiq Ur Rahman
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hafiz Ansar Rasul Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China,Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Gao Y, Lu Y, Song Y, Jing L. Analysis of codon usage bias of WRKY transcription factors in Helianthus annuus. BMC Genom Data 2022; 23:46. [PMID: 35725374 PMCID: PMC9210703 DOI: 10.1186/s12863-022-01064-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The phenomenon of codon usage bias is known to exist in many genomes and is mainly determined by mutation and selection. Codon usage bias analysis is a suitable strategy for identifying the principal evolutionary driving forces in different organisms. Sunflower (Helianthus annuus L.) is an annual crop that is cultivated worldwide as ornamentals, food plants and for their valuable oil. The WRKY family genes in plants play a central role in diverse regulation and multiple stress responses. Evolutionary analysis of WRKY family genes of H. annuus can provide rich genetic information for developing hybridization resources of the genus Helianthus.
Results
Bases composition analysis showed the average GC content of WRKY genes of H. annuus was 43.42%, and the average GC3 content was 39.60%, suggesting that WRKY gene family prefers A/T(U) ending codons. There were 29 codons with relative synonymous codon usage (RSCU) greater than 1 and 22 codons ending with A and U base. The effective number of codons (ENC) and codon adaptation index (CAI) in WRKY genes ranged from 43.47–61.00 and 0.14–0.26, suggesting that the codon bias was weak and WRKY genes expression level was low. Neutrality analysis found a significant correlation between GC12 and GC3. ENC-plot showed most genes on or close to the expected curve, suggesting that mutational bias played a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that the usage of AT and GC was disproportionate. A total of three codons were identified as the optimal codons.
Conclusion
Apart from natural selection effects, most of the genetic evolution in the H. annuus WRKY genome might be driven by mutation pressure. Our results provide a theoretical foundation for elaborating the genetic architecture and mechanisms of H. annuus and contributing to enrich H. annuus genetic resources.
Collapse
|
8
|
Wang X, Sun J, Lu L, Pu FY, Zhang DR, Xie FQ. Evolutionary dynamics of codon usages for peste des petits ruminants virus. Front Vet Sci 2022; 9:968034. [PMID: 36032280 PMCID: PMC9412750 DOI: 10.3389/fvets.2022.968034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important agent of contagious, acute and febrile viral diseases in small ruminants, while its evolutionary dynamics related to codon usage are still lacking. Herein, we adopted information entropy, the relative synonymous codon usage values and similarity indexes and codon adaptation index to analyze the viral genetic features for 45 available whole genomes of PPRV. Some universal, lineage-specific, and gene-specific genetic features presented by synonymous codon usages of the six genes of PPRV that encode N, P, M, F, H and L proteins reflected evolutionary plasticity and independence. The high adaptation of PPRV to hosts at codon usages reflected high viral gene expression, but some synonymous codons that are rare in the hosts were selected in high frequencies in the viral genes. Another obvious genetic feature was that the synonymous codons containing CpG dinucleotides had weak tendencies to be selected in viral genes. The synonymous codon usage patterns of PPRV isolated during 2007–2008 and 2013–2014 in China displayed independent evolutionary pathway, although the overall codon usage patterns of these PPRV strains matched the universal codon usage patterns of lineage IV. According to the interplay between nucleotide and synonymous codon usages of the six genes of PPRV, the evolutionary dynamics including mutation pressure and natural selection determined the viral survival and fitness to its host.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei Lu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei-yang Pu
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - De-rong Zhang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Fu-qiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Fu-qiang Xie
| |
Collapse
|
9
|
Rahman SU, Abdullah M, Khan AW, Haq MIU, Haq NU, Aziz A, Tao S. A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 2022; 308:198646. [PMID: 34822954 DOI: 10.1016/j.virusres.2021.198646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan; College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | - Muhammad Abdullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Wajid Khan
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Muhammad Inam Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Noor Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Nair RR, Mohan M, Rudramurthy GR, Vivekanandam R, Satheshkumar PS. Strategies and Patterns of Codon Bias in Molluscum Contagiosum Virus. Pathogens 2021; 10:1649. [PMID: 34959603 PMCID: PMC8703355 DOI: 10.3390/pathogens10121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Vadavalli Post, Coimbatore 641041, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA 30605, USA;
| | | | - Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore 641046, India;
| | | |
Collapse
|
11
|
Wang P, Mao Y, Su Y, Wang J. Comparative analysis of transcriptomic data shows the effects of multiple evolutionary selection processes on codon usage in Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. BMC Genomics 2021; 22:781. [PMID: 34717552 PMCID: PMC8557549 DOI: 10.1186/s12864-021-08106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kuruma shrimp, a major commercial shrimp species in the world, has two cryptic or sibling species, Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. Codon usage analysis would contribute to our understanding of the genetic and evolutionary characteristics of the two Marsupenaeus species. In this study, we analyzed codon usage and related indices using coding sequences (CDSs) from RNA-seq data. RESULTS Using CodonW 1.4.2 software, we performed the codon bias analysis of transcriptomes obtained from hepatopancreas tissues, which indicated weak codon bias. Almost all parameters had similar correlations for both species. The gene expression level (FPKM) was negatively correlated with A/T3s. We determined 12 and 14 optimal codons for M. japonicus and M. pulchricaudatus, respectively, and all optimal codons have a C/G-ending. The two Marsupenaeus species had different usage frequencies of codon pairs, which contributed to further analysis of transcriptional differences between them. Orthologous genes that underwent positive selection (ω > 1) had a higher correlation coefficient than that of experienced purifying selection (ω < 1). Parity Rule 2 (PR2) and effective number of codons (ENc) plot analysis showed that the codon usage patterns of both species were influenced by both mutations and selection. Moreover, the average observed ENc value was lower than the expected value for both species, suggesting that factors other than GC may play roles in these phenomena. The results of multispecies clustering based on codon preference were consistent with traditional classification. CONCLUSIONS This study provides a relatively comprehensive understanding of the correlations among codon usage bias, gene expression, and selection pressures of CDSs for M. japonicus and M. pulchricaudatus. The genetic evolution was driven by mutations and selection pressure. Moreover, the results point out new insights into the specificities and evolutionary characteristics of the two Marsupenaeus species.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
12
|
Lin YT, Chau LF, Coutts H, Mahmoudi M, Drampa V, Lee CH, Brown A, Hughes DJ, Grey F. Does the Zinc Finger Antiviral Protein (ZAP) Shape the Evolution of Herpesvirus Genomes? Viruses 2021; 13:1857. [PMID: 34578438 PMCID: PMC8473364 DOI: 10.3390/v13091857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
An evolutionary arms race occurs between viruses and hosts. Hosts have developed an array of antiviral mechanisms aimed at inhibiting replication and spread of viruses, reducing their fitness, and ultimately minimising pathogenic effects. In turn, viruses have evolved sophisticated counter-measures that mediate evasion of host defence mechanisms. A key aspect of host defences is the ability to differentiate between self and non-self. Previous studies have demonstrated significant suppression of CpG and UpA dinucleotide frequencies in the coding regions of RNA and small DNA viruses. Artificially increasing these dinucleotide frequencies results in a substantial attenuation of virus replication, suggesting dinucleotide bias could facilitate recognition of non-self RNA. The interferon-inducible gene, zinc finger antiviral protein (ZAP) is the host factor responsible for sensing CpG dinucleotides in viral RNA and restricting RNA viruses through direct binding and degradation of the target RNA. Herpesviruses are large DNA viruses that comprise three subfamilies, alpha, beta and gamma, which display divergent CpG dinucleotide patterns within their genomes. ZAP has recently been shown to act as a host restriction factor against human cytomegalovirus (HCMV), a beta-herpesvirus, which in turn evades ZAP detection by suppressing CpG levels in the major immediate-early transcript IE1, one of the first genes expressed by the virus. While suppression of CpG dinucleotides allows evasion of ZAP targeting, synonymous changes in nucleotide composition that cause genome biases, such as low GC content, can cause inefficient gene expression, especially in unspliced transcripts. To maintain compact genomes, the majority of herpesvirus transcripts are unspliced. Here we discuss how the conflicting pressures of ZAP evasion, the need to maintain compact genomes through the use of unspliced transcripts and maintaining efficient gene expression may have shaped the evolution of herpesvirus genomes, leading to characteristic CpG dinucleotide patterns.
Collapse
Affiliation(s)
- Yao-Tang Lin
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Long-Fung Chau
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Hannah Coutts
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Matin Mahmoudi
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Vayalena Drampa
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Chen-Hsuin Lee
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - Alex Brown
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (Y.-T.L.); (L.-F.C.); (H.C.); (M.M.); (V.D.); (C.-H.L.); (A.B.)
| |
Collapse
|
13
|
Saha J, Bhattacharjee S, Pal Sarkar M, Saha BK, Basak HK, Adhikary S, Roy V, Mandal P, Chatterjee A, Pal A. A comparative genomics-based study of positive strand RNA viruses emphasizing on SARS-CoV-2 utilizing dinucleotide signature, codon usage and codon context analyses. GENE REPORTS 2021; 23:101055. [PMID: 33615042 PMCID: PMC7887452 DOI: 10.1016/j.genrep.2021.101055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The novel corona virus disease or COVID-19 caused by a positive strand RNA virus (PRV) called SARS-CoV-2 is plaguing the entire planet as we conduct this study. In this study a multifaceted analysis was carried out employing dinucleotide signature, codon usage and codon context to compare and unravel the genomic as well as genic characteristics of the SARS-CoV-2 isolates and how they compare to other PRVs which represents some of the most pathogenic human viruses. The main emphasis of this study was to comprehend the codon biology of the SARS-CoV-2 in the backdrop of the other PRVs like Poliovirus, Japanese encephalitis virus, Hepatitis C virus, Norovirus, Rubella virus, Semliki Forest virus, Zika virus, Dengue virus, Human rhinoviruses and the Betacoronaviruses since codon usage pattern along with the nucleotide composition prevalent within the viral genome helps to understand the biology and evolution of viruses. Our results suggest discrete genomic dinucleotide signature within the PRVs. Some of the genes from the different SARS-CoV-2 isolates were also found to demonstrate heterogeneity in terms of their dinucleotide signature. The SARS-CoV-2 isolates also demonstrated a codon context trend characteristically dissimilar to the other PRVs. The findings of this study are expected to contribute to the developing global knowledge base in countering COVID-19.
Collapse
Key Words
- CAI, Codon Adaptation Index
- CNS, Central Nervous System
- COVID-19
- CRS, Congenital Rubella Syndrome
- CUB, Codon Usage Bias
- Codon context
- Codon usage bias
- Coronaviruses
- Fop, Frequency of optimal codons
- GC1, Guanine and Cytosine content on the first position of the codon
- GC2, Guanine and Cytosine content on the second position of the codon
- GC3, Guanine and Cytosine content on the third position of the codon
- HCV, Hepatitis C Virus
- MERS, Middle East Respiratory Syndrome
- MFE, Minimum Free Energy
- Nc, Effective Number of Codons
- PCA, Principal Component Analysis
- PRV, Positive strand RNA Virus
- Positive strand RNA virus
- RCDI, Relative Codon De-Optimization Index
- RSCU, Relative Synonymous Codon Usage
- SARS, Severe Acute Respiratory Syndrome
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SCUO, Synonymous Codon Usage Order
- SiD, Similarity Index
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Sukanya Bhattacharjee
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Hriday Kumar Basak
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Samarpita Adhikary
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
14
|
Dong S, Zhang L, Pang W, Zhang Y, Wang C, Li Z, Ma L, Tang W, Yang G, Song H. Comprehensive analysis of coding sequence architecture features and gene expression in Arachis duranensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:213-222. [PMID: 33707864 PMCID: PMC7907404 DOI: 10.1007/s12298-021-00938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 06/09/2023]
Abstract
Coding sequence (CDS) architecture affects gene expression levels in organisms. Codon optimization can increase the gene expression level. Therefore, understanding codon usage patterns has important implications for research on genetic engineering and exogenous gene expression. To date, the codon usage patterns of many model plants have been analyzed. However, the relationship between CDS architecture and gene expression in Arachis duranensis remains poorly understood. According to the results of genome sequencing, A. duranensis has many resistant genes that can be used to improve the cultivated peanut. In this study, bioinformatic approaches were used to estimate A. duranensis CDS architectures, including frequency of the optimal codon (Fop), polypeptide length and GC contents at the first (GC1), second (GC2) and third (GC3) codon positions. In addition, Arachis RNA-seq datasets were downloaded from PeanutBase. The relationships between gene expression and CDS architecture were assessed both under normal growth as well as nematode and drought stress conditions. A total of 26 codons with high frequency were identified, which preferentially ended with A or T in A. duranensis CDSs under the above-mentioned three conditions. A similar CDS architecture was found in differentially expressed genes (DEGs) under nematode and drought stresses. The GC1 content differed between DEGs and non-differentially expressed genes (NDEGs) under both drought and nematode stresses. The expression levels of DEGs were affected by different CDS architectures compared with NDEGs under drought stress. In addition, no correlation was found between differential gene expression and CDS architecture neither under nematode nor under drought stress. These results aid the understanding of gene expression in A. duranensis.
Collapse
Affiliation(s)
- Shuwei Dong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Long Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wenhui Pang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chang Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhenyi Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Yao X, Fan Q, Yao B, Lu P, Rahman SU, Chen D, Tao S. Codon Usage Bias Analysis of Bluetongue Virus Causing Livestock Infection. Front Microbiol 2020; 11:655. [PMID: 32508755 PMCID: PMC7248248 DOI: 10.3389/fmicb.2020.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is a double-stranded RNA virus with multiple segments and belongs to the genus Orbivirus within the family Reoviridae. BTV is spread to livestock through its dominant vector, biting midges of genus Culicoides. Although great progress has been made in genomic analyses, it is not fully understood how BTVs adapt to their hosts and evade the host's immune systems. In this study, we retrieved BTV genome sequences from the National Center for Biotechnology Information (NCBI) database and performed a comprehensive research to explore the codon usage patterns in 50 BTV strains. We used bioinformatic approaches to calculate the relative synonymous codon usage (RSCU), codon adaptation index (CAI), effective number of codons (ENC), and other indices. The results indicated that most of the overpreferred codons had A-endings, which revealed that mutational pressure was the major force shaping codon usage patterns in BTV. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Based on the RSCU values, we performed a comparative analysis between BTVs and their hosts, suggesting that BTVs were inclined to evolve their codon usage patterns that were comparable to those of their hosts. Such findings will be conducive to understanding the elements that contribute to viral evolution and adaptation to hosts.
Collapse
Affiliation(s)
- Xiaoting Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ping Lu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Siddiq Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Biswas R, Panja AS, Bandopadhyay R. In Silico Analyses of Burial Codon Bias Among the Species of Dipterocarpaceae Through Molecular and Phylogenetic Data. Evol Bioinform Online 2019; 15:1176934319834888. [PMID: 31223230 PMCID: PMC6563522 DOI: 10.1177/1176934319834888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction: DNA barcode, a molecular marker, is used to distinguish among the closely
related species, and it can be applied across a broad range of taxa to
understand ecology and evolution. MaturaseK gene (matK) and
rubisco bisphosphate carboxylase/oxygenase form I gene
(rbcL) of the chloroplast are highly conserved in a
plant system, which are used as core barcode. This present endeavor entails
the comprehensive examination of the under threat plant species based on
success of discrimination on DNA barcode under selection pressure. Result: The family Dipterocarpaceae comprising of 15 genera is under threat due to
some factors, namely, deforestation, habitat alteration, poor seed, pollen
dispersal, etc. Species of this family was grouped into 6 clusters for
matK and 5 clusters and 2 sub-clusters for
rbcL in the phylogenetic tree by using neighbor-joining
method. Cluster I to cluster VI of matK and cluster I to
cluster V of rbcL genes were analyzed by various codon and
substitution bias tools. Mutational pressure guided the codon bias which was
favored by the avoidance of higher GC content and significant negative
correlation between GC12 and GC3 (in sub-cluster I of cluster I
[0.03 < P], cluster I
[0.00001 < P], and cluster II
[0.01 < P] of rbcL, and cluster IV
[0.013 < P] of matK). After
refining the results, it could be speculated that the lower null expectation
values (R = 0.5 or <0.5) were less divergent from the
evolutionary perspective. Apart from that, the higher null expectation
values (R = >0.85) also showed the same result, which
possibly could be due to the negative impact of very high and low transition
rate than transversion. Conclusion: Through the analysis of inter-generic, inter/intra-specific variation and
phylogenetic data, it was found that both selection and mutation played an
important role in synonymous codon choice in these genes, but they acted
inconsistently on the genes, both matK and
rbcL. In vitro stable proteins of both
matK and rbcL were selected through
natural selection rather than mutational selection. matK
gene had higher individual discrimination and barcode success compared with
rbcL. These discriminatory approaches may describe the
problem related to the extinction of plant species. Hence, it becomes very
imperative to identify and detect the under threat plant species in
advance.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| |
Collapse
|
17
|
Das M, Kumar S. Analysis of codon usage pattern of infectious laryngotracheitis virus immunogenic glycoproteins and its biological implications. INFECTION GENETICS AND EVOLUTION 2018; 62:53-59. [PMID: 29654923 DOI: 10.1016/j.meegid.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 11/29/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) is a highly contagious acute respiratory poultry pathogen. Modified live ILTV vaccines are the only control against ILT infections. Reversions and establishment of latent infections are the major concerns imparting the need to develop safer vaccines against ILTV infection. ILTV glycoprotein B and D (gB and gD) are major protective immunogens. The factors shaping synonymous codon usage bias and nucleotide composition in ILTV glycoprotein genes have not yet been reported. In the present study, we have analyzed the synonymous codon usage indices of ILTV gB and gD genes. Variation in the codon usage was seen in both the glycoproteins majorly by mutational pressure. The pattern was determined using the correspondence analysis, effective number of codon (Nc), GC3 plot and correlation analyses among different indices. The study is a comprehensive analysis of the codon usage patterns of ILTV glycoprotein genes. This will be helpful in understanding the codon usage bias of ILTV and related DNA viruses which could further explore its biology.
Collapse
Affiliation(s)
- Moushumee Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam Pin-781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam Pin-781039, India.
| |
Collapse
|
18
|
Karumathil S, Raveendran NT, Ganesh D, Kumar Ns S, Nair RR, Dirisala VR. Evolution of Synonymous Codon Usage Bias in West African and Central African Strains of Monkeypox Virus. Evol Bioinform Online 2018; 14:1176934318761368. [PMID: 29551886 PMCID: PMC5846927 DOI: 10.1177/1176934318761368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
The evolution of bias in synonymous codon usage in chosen monkeypox viral genomes and the factors influencing its diversification have not been reported so far. In this study, various trends associated with synonymous codon usage in chosen monkeypox viral genomes were investigated, and the results are reported. Identification of factors that influence codon usage in chosen monkeypox viral genomes was done using various codon usage indices, such as the relative synonymous codon usage, the effective number of codons, and the codon adaptation index. The Spearman rank correlation analysis and a correspondence analysis were used for correlating various factors with codon usage. The results revealed that mutational pressure due to compositional constraints, gene expression level, and selection at the codon level for utilization of putative optimal codons are major factors influencing synonymous codon usage bias in monkeypox viral genomes. A cluster analysis of relative synonymous codon usage values revealed a grouping of more virulent strains as one major cluster (Central African strains) and a grouping of less virulent strains (West African strains) as another major cluster, indicating a relationship between virulence and synonymous codon usage bias. This study concluded that a balance between the mutational pressure acting at the base composition level and the selection pressure acting at the amino acid level frames synonymous codon usage bias in the chosen monkeypox viruses. The natural selection from the host does not seem to have influenced the synonymous codon usage bias in the analyzed monkeypox viral genomes.
Collapse
Affiliation(s)
- Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | - Nimal T Raveendran
- Amrita Centre for Nanosciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Rahul R Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | | |
Collapse
|
19
|
Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts. INFECTION GENETICS AND EVOLUTION 2017; 58:1-16. [PMID: 29198972 DOI: 10.1016/j.meegid.2017.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a negative-sense, single stranded RNA virus with a three-segmented genome that belongs to the genus Nairovirus within the family Bunyaviridae. CCHFV uses Hyalomma ticks as a vector to infect humans with a wide range of clinical signs, from asymptomatic to Zika-like syndrome. Despite significant progress in genomic analyses, the influences of viral relationships with different hosts on overall viral fitness, survival, and evading the host's immune systems remain unknown. To better understand the evolutionary characteristics of CCHFV, we performed a comprehensive analysis of the codon usage pattern in 179 CCHFV strains by calculating the relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and other indicators. The results indicate that the codon usage bias of CCHFV is relatively low. Several lines of evidence support the hypothesis that a translation selection factor is shaping codon usage pattern in this virus. A correspondence analysis (CA) showed that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of CCHFV. Additionally, the results from a comparative analysis of RSCU between CCHFV and its hosts suggest that CCHFV tends to evolve codon usage patterns that are comparable to those of its hosts. Furthermore, the selection pressures from Homo sapiens, Bos taurus, and Ovis aries on the CCHFV RSCU patterns were dominant when compared with selection pressure from Hyalomma spp. vectors. Taken together, both natural selection and mutation pressure are important for shaping the codon usage pattern of CCHFV. We believe that such findings will assist researchers in understanding the evolution of CCHFV and its adaptation to its hosts.
Collapse
|
20
|
Kolb AW, Lewin AC, Moeller Trane R, McLellan GJ, Brandt CR. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus. BMC Genomics 2017; 18:887. [PMID: 29157201 PMCID: PMC5697016 DOI: 10.1186/s12864-017-4283-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Andrew C Lewin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph Moeller Trane
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Mioduser O, Goz E, Tuller T. Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis. BMC Genomics 2017; 18:866. [PMID: 29132309 PMCID: PMC5683454 DOI: 10.1186/s12864-017-4248-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Background Viruses undergo extensive evolutionary selection for efficient replication which effects, among others, their codon distribution. In the current study, we aimed at understanding the way evolution shapes the codon distribution in early vs. late viral genes in terms of their expression during different stages in the viral replication cycle. To this end we analyzed 14 bacteriophages and 11 human viruses with available information about the expression phases of their genes. Results We demonstrated evidence of selection for distinct composition of synonymous codons in early and late viral genes in 50% of the analyzed bacteriophages. Among others, this phenomenon may be related to the time specific adaptation of the viral genes to the translation efficiency factors involved at different bacteriophage developmental stages. Specifically, we showed that the differences in codon composition in different temporal gene groups cannot be explained only by phylogenetic proximities between the analyzed bacteriophages, and can be partially explained by differences in the adaptation to the host tRNA pool, nucleotide bias, GC content and more. In contrast, no difference in temporal regulation of synonymous codon usage was observed in human viruses, possibly because of a stronger selection pressure due to a larger effective population size in bacteriophages and their bacterial hosts. Conclusions The codon distribution in large fractions of bacteriophage genomes tend to be different in early and late genes. This phenomenon seems to be related to various aspects of the viral life cycle, and to various intracellular processes. We believe that the reported results should contribute towards better understanding of viral evolution and may promote the development of relevant procedures in synthetic virology. Electronic supplementary material The online version of this article (10.1186/s12864-017-4248-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oriah Mioduser
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel
| | - Eli Goz
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel.,SynVaccineLtd. Ramat Hachayal, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel. .,SynVaccineLtd. Ramat Hachayal, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
22
|
Sadhasivam A, Vetrivel U. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. J Biomol Struct Dyn 2017. [PMID: 28627970 DOI: 10.1080/07391102.2017.1343685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.
Collapse
Affiliation(s)
- Anupriya Sadhasivam
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| | - Umashankar Vetrivel
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| |
Collapse
|
23
|
|
24
|
Lal D, Verma M, Behura SK, Lal R. Codon usage bias in phylum Actinobacteria : relevance to environmental adaptation and host pathogenicity. Res Microbiol 2016; 167:669-677. [DOI: 10.1016/j.resmic.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
25
|
Karumathil S, Dirisala VR, Srinadh U, Nikhil V, Kumar NSS, Nair RR. Evolution of Synonymous Codon Usage in the Mitogenomes of Certain Species of Bilaterian Lineage with Special Reference to Chaetognatha. Bioinform Biol Insights 2016; 10:167-84. [PMID: 27688709 PMCID: PMC5034883 DOI: 10.4137/bbi.s38192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/17/2016] [Accepted: 08/28/2016] [Indexed: 11/20/2022] Open
Abstract
Chaetognatha is a minor phylum, comprising transparent marine invertebrates varying in size from 0.5 to 12 cm. The exact phylogenetic position of Chaetognatha in Metazoa has not been deciphered as some embryological characteristics place chaetognaths among deuterostomes and some morphological characteristics place these among protostomes. In this study, the major factors that drive synonymous codon usage bias (SCUB) in the mitogenomes of representative species of Chaetognatha and chosen species of other closely related phyla were analyzed. Spearman’s rank correlation analyses of nucleotide contents suggested that mutational pressure and selection were acting in all examined mitogenomes but with varying intensities. The quantification of SCUB using effective number of codons vs. GC composition at the third codon position (GC3) plot suggested that mutational pressure due to GC compositional constraints might be one of the major influencing forces driving the SCUB in all chaetognaths except Sagitta enflata. However, neutrality plots revealed no significant correlation between GC3 and cumulative GC content at first and second codon positions (GC12) in all other species, except in Daphnia pulex. The parity rule 2 bias plot showed that significant compositional differences existed between C and G, as well as between A and T, contents in most of the protein-coding genes (PCGs) and, comparatively, A and T contents were used more proportionally than C and G contents in all chosen mitogenomes. Chi-square analysis revealed the presence of putative optimal codons in all species, except in S. enflata. The correspondence analysis identified that mutational pressure and selection act on the mitogenomes of the selected chaetognaths and other phyla with varying intensities. The cluster analysis based on relative synonymous codon usage (RSCU) values revealed that RSCU variations in the PCGs of mitogenomes of chaetognaths are more comparable with those of protostomes. Apart from mutational pressure and selection, certain unknown selective forces might be acting on the PCGs in the analyzed mitogenomes as the phenomenon of SCUB could not be explained by mutational pressure, by selection, or by both.
Collapse
Affiliation(s)
- Sudeesh Karumathil
- Aushmath Biosciences, Administrative office, Devaraj Corner, Vadavalli Post, Coimbatore, Tamil Nadu, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Uthpala Srinadh
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Valaboju Nikhil
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - N Satya Sampath Kumar
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Rahul R Nair
- Aushmath Biosciences, Administrative office, Devaraj Corner, Vadavalli Post, Coimbatore, Tamil Nadu, India
| |
Collapse
|
26
|
Li N, Li Y, Zheng C, Huang J, Zhang S. Genome-wide comparative analysis of the codon usage patterns in plants. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0417-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Al-Ali AT, Sweet C. Further studies on the role of the residue 890 cysteine to tyrosine mutation in the M70 primase ORF of the temperature-sensitive mutant (tsm5) of murine cytomegalovirus. J Med Virol 2016; 88:1613-21. [PMID: 26919386 DOI: 10.1002/jmv.24507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 11/06/2022]
Abstract
A mutation (C890Y) introduced into the M70 primase gene of murine cytomegalovirus (MCMV) resulted in reduced viral replication in murine embryo fibroblasts at 40°C and the mutant was severely attenuated in vivo. The attenuated replication of the M70 mutant was also observed in Raw 264.7 macrophages at 37°C, demonstrating that the mutation produced a defective rather than an unstable protein possibly reducing the amount of functional protein under different environmental conditions. Many synonymous mutations were introduced into this ORF by changing codon preferences that should reduce the efficiency of gene translation, but not change protein sequence or structure. Two Bacterial Artificial Chromosome (BAC) constructs were produced with 155 codons (at the distal third of the M70 gene) changed to MCMV less preferred codons and with either cysteine (BAC70(155Cys) ) or tyrosine (BAC70(155Tyr) ) at residue 890. Upon transfection of these BACs into NIH 3T3 cells, only BAC70(155Cys) produced virus and this mutant Mt70(155Cys) replicated similarly to its revertant and the wt MCMV K181 (Perth) variant. A metagenomic analysis of the protein structure of the primase using PredictProtein showed that the change from cysteine (M70Cys) to tyrosine (M70Tyr) has a marked effect on protein structure. However, when the cysteine residue was replaced by serine (M70Ser) or methionine (M70Met), which produced mutant viruses with a wild-type phenotype, the predicted structure was similar to the wild-type structure. J. Med. Virol. 88:1613-1621, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Clive Sweet
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
28
|
Bioinformatics analysis of codon usage patterns and influencing factors in Penaeus monodon nudivirus. Arch Virol 2015; 161:459-64. [DOI: 10.1007/s00705-015-2689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
|
29
|
Liu X, Oka T, Wang Q. Genomic characterization of a US porcine kobuvirus strain. Arch Microbiol 2015; 197:1033-40. [PMID: 26316163 DOI: 10.1007/s00203-015-1139-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 08/02/2015] [Indexed: 12/14/2022]
Abstract
Porcine kobuvirus has been detected from pig fecal samples in the USA, but there is still no information on the full-length genomes. In this study, we characterized the first complete genomic sequence of a US porcine kobuvirus strain OH/RV50/2011. The viral genome is 8123 nucleotides (nt) long, including a 576-nt 5'-untranslated region (UTR), a 7380-nt polyprotein encoding sequence, and a 167-nt 3'-UTR. A complete genome sequence alignment suggested that two types of porcine kobuviruses were found based on whether a 30-aa deletion existed in the 2B encoding region. Furthermore, several conserved motifs that can be used for the design of universal kobuvirus or porcine kobuvirus-specific primers were verified in non-structural protein genes. Phylogenetic analysis based on the complete genome sequence showed that RV50 was grouped with other porcine kobuviruses and more closely related to Chinese strains. Secondary structure analysis of the 5'-UTR showed that RV50 has three stem-loop domains in the first 108 nt and has a potential hepacivirus-/pestivirus-like type IV group-B-like internal ribosomal entry site, like the porcine kobuvirus prototype strain S-1. Codon usage analysis showed that the most preferred usage tends to be C or U at the end of a codon in a porcine kobuvirus genome. These results will be useful in understanding the evolution of porcine kobuviruses .
Collapse
Affiliation(s)
- Xinsheng Liu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA,
| | | | | |
Collapse
|
30
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
31
|
Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, Ping Y, Liu S, Sun J. Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 2014; 14:262. [PMID: 25515024 PMCID: PMC4276022 DOI: 10.1186/s12862-014-0262-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synonymous codon usage bias (SCUB) is an inevitable phenomenon in organismic taxa, generally referring to differences in the occurrence frequency of codons across different species or within the genome of the same species. SCUB happens in various degrees under pressure from nature selection, mutation bias and other factors in different ways. It also attaches great significance to gene expression and species evolution, however, a systematic investigation towards the codon usage in Bombyx mori (B. mori) has not been reported yet. Moreover, it is still indistinct about the reasons contributing to the bias or the relationship between the bias and the evolution of B. mori. RESULTS The comparison of the codon usage pattern between the genomic DNA (gDNA) and the mitochondrial DNA (mtDNA) from B. mori suggests that mtDNA has a higher level of codon bias. Furthermore, the correspondence analysis suggests that natural selection, such as gene length, gene function and translational selection, dominates the codon preference of mtDNA, while the composition constraints for mutation bias only plays a minor role. Additionally, the clustering results of the silkworm superfamily suggest a lack of explicitness in the relationship between the codon usage of mitogenome and species evolution. CONCLUSIONS Among the complicated influence factors leading to codon bias, natural selection is found to play a major role in shaping the high bias in the mtDNA of B. mori from our current data. Although the cluster analysis reveals that codon bias correlates little with the species evolution, furthermore, a detailed analysis of codon usage of mitogenome provides better insight into the evolutionary relationships in Lepidoptera. However, more new methods and data are needed to investigate the relationship between the mtDNA bias and evolution.
Collapse
Affiliation(s)
- Lei Wei
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian He
- Guangzhou East Campus Lab Center, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Xian Jia
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Qi Qi
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhisheng Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Hao Zheng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yao Ping
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Shuyu Liu
- Guangzhou East Campus Lab Center, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X. Codon usage bias in human cytomegalovirus and its biological implication. Gene 2014; 545:5-14. [PMID: 24814188 DOI: 10.1016/j.gene.2014.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Collapse
Affiliation(s)
- Changyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Jing Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
33
|
Complex codon usage pattern and compositional features of retroviruses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:848123. [PMID: 24288576 PMCID: PMC3833384 DOI: 10.1155/2013/848123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 11/26/2022]
Abstract
Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.
Collapse
|
34
|
Nair RR, Nandhini MB, Sethuraman T, Doss G. Mutational pressure dictates synonymous codon usage in freshwater unicellular α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301. SPRINGERPLUS 2013; 2:492. [PMID: 24255825 PMCID: PMC3825069 DOI: 10.1186/2193-1801-2-492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
Background Comparative study of synonymous codon usage variations and factors influencing its diversification in α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301 has not been reported so far. In the present study, we investigated various factors associated with synonymous codon usage in the genomes of P. chromatophora and S. elongatus PCC6301 and findings were discussed. Results Mutational pressure was identified as the major force behind codon usage variation in both genomes. However, correspondence analysis revealed that intensity of mutational pressure was higher in S. elongatus than in P. chromatophora. Living habitats were also found to determine synonymous codon usage variations across the genomes of P. chromatophora and S. elongatus. Conclusions Whole genome sequencing of α-cyanobacteria in the cyanobium clade would certainly facilitate the understanding of synonymous codon usage patterns and factors contributing its diversification in presumed ancestors of photosynthetic endosymbionts of P. chromatophora.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Department of Biotechnology, Vignan University, Vadlamudi, 522 213 Guntur, Andhra Pradesh India
| | | | | | | |
Collapse
|
35
|
Reply to "codon usage frequency of RNA virus genomes from high-temperature acidic-environment metagenomes". J Virol 2013; 87:1920-1. [PMID: 23308028 DOI: 10.1128/jvi.02883-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Li M, Zhao Z, Chen J, Wang B, Li Z, Li J, Cai M. Characterization of synonymous codon usage bias in the pseudorabies virus US1 gene. Virol Sin 2012; 27:303-15. [PMID: 23055006 DOI: 10.1007/s12250-012-3270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 12/11/2022] Open
Abstract
In the present study, we examined the codon usage bias between pseudorabies virus (PRV) US1 gene and the US1-like genes of 20 reference alphaherpesviruses. Comparative analysis showed noticeable disparities of the synonymous codon usage bias in the 21 alphaherpesviruses, indicated by codon adaptation index, effective number of codons (ENc) and GC3s value. The codon usage pattern of PRV US1 gene was phylogenetically conserved and similar to that of the US1-like genes of the genus Varicellovirus of alphaherpesvirus, with a strong bias towards the codons with C and G at the third codon position. Cluster analysis of codon usage pattern of PRV US1 gene with its reference alphaherpesviruses demonstrated that the codon usage bias of US1-like genes of 21 alphaherpesviruses had a very close relation with their gene functions. ENc-plot revealed that the genetic heterogeneity in PRV US1 gene and the 20 reference alphaherpesviruses was constrained by G+C content, as well as the gene length. In addition, comparison of codon preferences in the US1 gene of PRV with those of E. coli, yeast and human revealed that there were 50 codons showing distinct usage differences between PRV and yeast, 49 between PRV and human, but 48 between PRV and E. coli. Although there were slightly fewer differences in codon usages between E.coli and PRV, the difference is unlikely to be statistically significant, and experimental studies are necessary to establish the most suitable expression system for PRV US1. In conclusion, these results may improve our understanding of the evolution, pathogenesis and functional studies of PRV, as well as contributing to the area of herpesvirus research or even studies with other viruses.
Collapse
Affiliation(s)
- Meili Li
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Shi SL, Jiang YR, Liu YQ, Xia RX, Qin L. Selective pressure dominates the synonymous codon usage in parvoviridae. Virus Genes 2012; 46:10-9. [PMID: 22996735 DOI: 10.1007/s11262-012-0818-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
Parvoviridae is a family of small non-enveloped viruses and divided into two subfamilies. The family members infect a wide range of organisms from insects to humans and some of the members (e.g., nonpathogenic adeno-associated viruses) are effective gene therapy delivery vectors. We detailed the synonymous codon usage pattern of Parvoviridae family from the available 58 sequenced genomes through multivariate statistical methods. Our results revealed that nine viruses showed some degree of strong codon bias, and the others possessed a general weak trend of codon bias. ENc-plot and neutrality plot results showed that selective pressure dominated over mutation in shapes coding sequence's composition. The overall GC content and GC content at the third synonymous codon position were the principal determinants behind the variations within the codon usage patterns, as they both significantly correlated with the first axis of correspondence analysis. In addition, gene length had no direct influence on the codon usage pattern. Densovirinae subfamily and Parvovirinae subfamily possessed nine identical preferred codons, though most of the two subfamilies codon usage frequencies were significantly different. The result of cluster analysis based on synonymous codon usage was discordant with that of taxonomic classification. Adeno-associated viruses formed a separated clade far from other Parvoviridae members in the dendrogram. Thus, we concluded that natural selection rather than mutation pressure accounts for the main factor that affects the codon bias in Parvoviridae family.
Collapse
Affiliation(s)
- Sheng-Lin Shi
- Postdoctoral Station of Plant Protection, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, P.R.China.
| | | | | | | | | |
Collapse
|
38
|
Ahn I, Bae SE, Son HS. Comparative study of codon substitution patterns in foot-and-mouth disease virus (serotype O). Exp Mol Med 2012; 43:587-95. [PMID: 21825834 DOI: 10.3858/emm.2011.43.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We compared genetic variations in the VP1 gene of foot-and-mouth disease viruses (FMDVs) isolated since 2000 from various region of the world. We analyzed relative synonymous codon usage (RSCU) and phylogenetic relationship between geographical regions, and calculated the genetic substitution patterns between Korean isolate and those from other countries. We calculated the ratios of synonymously substituted codons (SSC) to all observed substitutions and developed a new analytical parameter, EMC (the ratio of exact matching codons within each synonymous substitution group) to investigate more detailed substitution patterns within each synonymous codon group. We observed that FMDVs showed distinct RSCU patterns according to phylogenetic relationships in the same serotype (serotype O). Moreover, while the SSC and EMC values of FMDVs decreased according to phylogenetic distance, G + C composition at the third codon position was strictly conserved. Although there was little variation among the SSC values of 18 amino acids, more dynamic differences were observed in EMC values. The EMC values of 4- and 6-fold degenerate amino acids showed significantly lower values while most 2-fold degenerate amino acids showed no significant difference. Our findings suggest that different EMC patterns among the 18 amino acids might be an important factor in determining the direction of evolution in FMDV.
Collapse
Affiliation(s)
- Insung Ahn
- Supercomputing Center,Korea Institute of Science and Technology Information,Daejon, Korea
| | | | | |
Collapse
|
39
|
Liu H, Huang Y, Du X, Chen Z, Zeng X, Chen Y, Zhang H. Patterns of synonymous codon usage bias in the model grass Brachypodium distachyon. GENETICS AND MOLECULAR RESEARCH 2012; 11:4695-706. [DOI: 10.4238/2012.october.17.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Abstract
In this paper, the comprehensive analysis of codon usage bias of Duck enteritis virus (DEV) UL21 gene was performed by using CAI, CHIPS and CUSP program of EMBOSS. Our study showed that codon usage bias of DEV UL21 had strong bias towards the A-ended or T-ended codons, and GC3s contents of the codon usage bias in DEV UL21 gene were significantly varied compared with those of other 27 reference herpesviruses. The CAI, ENC value of DEV CHv strain UL21 gene is 0.615 and 55.167, respectively, indicating that the codon usage bias of this gene is weak and lowly expressed. The plot of ENC versus GC3S content revealed that DEV UL21 gene is subject to GC compositional constraints. The phylogentic analysis about amino acids codon usage bias of DEV UL21 and the27 reference herpesviruses showed that DEV was evolutionarily closer to herpesviruses Mardivirus. In addition, the codon usage bias of DEV UL21 gene was compared with those of E. coli, yeast and humans. There are 42, 45, 39 same codons usage bias between the DEV UL21 to E.coli, Yeast, H.sapiens, respectively, indicaiting that UL21 gene of DEV may be more efficiently expressed in the yeast system.
Collapse
|
41
|
Zhao KN, Chen J. Codon usage roles in human papillomavirus. Rev Med Virol 2011; 21:397-411. [PMID: 22025363 DOI: 10.1002/rmv.707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV) genomes, similar to other virus genomes, frequently have a G + C content significantly different from their host species. The HPV genomes show a strong codon usage bias to 18 codons, with 14 showing T at the third position amongst degenerately encoded amino acids. The codon usage pattern in HPV genome plays an important role, which regulates low or non-translational expression of the viral capsid genes and results in very weak protein expression of oncogenes in a wide range of mammalian cells. Codon modification has been proved to be a powerful technology to overcome the translational blockage and weak expression of both HPV capsid genes and oncogenes in different expression systems. Furthermore, keratinocytes are the host cells of HPV infection; the codon usage in HPV capsid genes matches available aminoacyl-tRNAs in differentiated keratinocytes to modulate their protein expression. HPV DNA vaccines with codon optimization have been shown to have higher immunogenicity and induce both strong cellular and humoral responses in animal models, which may be a promising form of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
42
|
Roychoudhury S, Pan A, Mukherjee D. Genus specific evolution of codon usage and nucleotide compositional traits of poxviruses. Virus Genes 2011; 42:189-99. [PMID: 21369827 DOI: 10.1007/s11262-010-0568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/28/2010] [Indexed: 12/01/2022]
Abstract
Poxviruses are complex in their nucleotide compositional features of the coding regions. The codon usages in Poxviruses are in accordance with their compositional bias. In the Poxviridae family, codon usage patterns and nucleotide compositional traits are widely divergent across species but some conservation was observed within a genus. Viruses from six Chordopox genera, i.e., Avipoxvirus, Capripoxvirus, Cervidpoxvirus, Orthopoxvirus, Suipoxvirus, Yatapoxvirus, and one Entomopox genus- Betaentomopoxvirus, and some unclassified Entomopoxvirus are significantly rich in AT composition. Four other Chordopox genera- Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and some unclassified Chordopoxvirus are dominated by the GC rich viruses. Poxviruses from these AT rich and GC rich genera preferred AT or GC ending codons owing to their respective nucleotide compositional bias. For example, viruses from AT rich Orthopoxvirus, or GC rich Parapoxvirus have evolved with mutually exclusive type codon preferences following their genus-specific nucleotide compositions. Additional factors like gene length and expression level also influenced their codon usage patterns to some extent in some Poxvirus genera. Evidences from correspondence analysis and cluster analysis on the extent of divergence in codon usage also support this genus specific evolution of Poxvirus codon usage. Analyzes suggest that most of the Poxviruses from different genera, have evolved in almost two different evolutionary trajectory in context of their nucleotide composition and codon usage.
Collapse
Affiliation(s)
- Sourav Roychoudhury
- School of Information Technology, Bengal Engineering and Science University, Shibpur Howrah, 711103 West Bengal, India.
| | | | | |
Collapse
|
43
|
RoyChoudhury S, Mukherjee R, Chaudhury K. Molecular characterization of selenoproteins based on decreased glutathione peroxidase activity in preeclampsia. 2010 INTERNATIONAL CONFERENCE ON SYSTEMS IN MEDICINE AND BIOLOGY 2010. [DOI: 10.1109/icsmb.2010.5735420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|