1
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
3
|
Houhou F, Martí M, Cordero T, Aragonés V, Sáez C, Cebolla-Cornejo J, de Castro AP, Rodríguez-Concepción M, Picó B, Daròs JA. Carotenoid fortification of zucchini fruits using a viral RNA vector. Biotechnol J 2022; 17:e2100328. [PMID: 35157358 DOI: 10.1002/biot.202100328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Carotenoids are health-promoting metabolites in livestock and human diets. Some important crops have been genetically modified to increase their content. Although the usefulness of transgenic plants to alleviate nutritional deficiencies is obvious, their social acceptance has been controversial. RESULTS Here, we demonstrate an alternative biotechnological strategy for carotenoid fortification of edible fruits in which no transgenic DNA is involved. A viral RNA vector derived from Zucchini yellow mosaic virus (ZYMV) was modified to express a bacterial phytoene synthase (crtB), and inoculated to zucchini (Cucurbita pepo L.) leaves nurturing pollinated flowers. After the viral vector moved to the developing fruit and expressed crtB, the rind and flesh of the fruits developed yellow-orange rather than green color. Metabolite analyses showed a substantial enrichment in health-promoting carotenoids, such as α- and β-carotene (provitamin A), lutein and phytoene, in both rind and flesh. CONCLUSION Although this strategy is perhaps not free from controversy due to the use of genetically modified viral RNA, our work does demonstrate the possibility of metabolically fortifying edible fruits using an approach in which no transgenes are involved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fakhreddine Houhou
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| | - Maricarmen Martí
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| | - Cristina Sáez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Jaime Cebolla-Cornejo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Ana Pérez de Castro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Manuel Rodríguez-Concepción
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, 46022, Spain
| |
Collapse
|
4
|
Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge. Viruses 2021; 13:v13101930. [PMID: 34696360 PMCID: PMC8539092 DOI: 10.3390/v13101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.
Collapse
|
5
|
Verchot J, Herath V, Urrutia CD, Gayral M, Lyle K, Shires MK, Ong K, Byrne D. Development of a Reverse Genetic System for Studying Rose Rosette Virus in Whole Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1209-1221. [PMID: 32815767 DOI: 10.1094/mpmi-04-20-0094-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Venura Herath
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Cesar D Urrutia
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
| | - Kelsey Lyle
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, U.S.A
| | - Madalyn K Shires
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Kevin Ong
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - David Byrne
- Department of Horticulture Sciences, Texas A&M University, College Station, TX, U.S.A
| |
Collapse
|
6
|
González R, Wu B, Li X, Martínez F, Elena SF. Mutagenesis Scanning Uncovers Evolutionary Constraints on Tobacco Etch Potyvirus Membrane-Associated 6K2 Protein. Genome Biol Evol 2019; 11:1207-1222. [PMID: 30918938 PMCID: PMC6482416 DOI: 10.1093/gbe/evz069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
RNA virus high mutation rate is a double-edged sword. At the one side, most mutations jeopardize proteins functions; at the other side, mutations are needed to fuel adaptation. The relevant question then is the ratio between beneficial and deleterious mutations. To evaluate this ratio, we created a mutant library of the 6K2 gene of tobacco etch potyvirus that contains every possible single-nucleotide substitution. 6K2 protein anchors the virus replication complex to the network of endoplasmic reticulum membranes. The library was inoculated into the natural host Nicotiana tabacum, allowing competition among all these mutants and selection of those that are potentially viable. We identified 11 nonsynonymous mutations that remain in the viral population at measurable frequencies and evaluated their fitness. Some had fitness values higher than the wild-type and some were deleterious. The effect of these mutations in the structure, transmembrane properties, and function of 6K2 was evaluated in silico. In parallel, the effect of these mutations in infectivity, virus accumulation, symptoms development, and subcellular localization was evaluated in the natural host. The α-helix H1 in the N-terminal part of 6K2 turned out to be under purifying selection, while most observed mutations affect the link between transmembrane α-helices H2 and H3, fusing them into a longer helix and increasing its rigidity. In general, these changes are associated with higher within-host fitness and development of milder or no symptoms. This finding suggests that in nature selection upon 6K2 may result from a tradeoff between within-host accumulation and severity of symptoms.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, València, Spain
| | - Beilei Wu
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, València, Spain.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianghua Li
- Systems Biology Program, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, PRBB, Barcelona, Spain
| | - Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, València, Spain.,The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
7
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
8
|
Tran PT, Fang M, Widyasari K, Kim KH. A plant intron enhances the performance of an infectious clone in planta. J Virol Methods 2019; 265:26-34. [PMID: 30578897 DOI: 10.1016/j.jviromet.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023]
Abstract
Although infectious clones are fundamental tools in virology and plant pathology, their efficacy is often reduced by the instability of viral sequences in Escherichia coli. In this study, we constructed an infectious clone of PepMoV (pPepMoV) in a bacterial binary vector (pSNU1); the clone induces symptoms of PepMoV in agroinfiltrated plants. During its modification and maintenance in E. coli, however, the pPepMoV infectious clone was instable in the bacteria. Manipulation of this unstable clone in the bacterial strain DH10B led to the spontaneous formation of a recombined clone with high stability in the bacteria but with reduced infectivity due to an unwanted insertion of an E. coli sequence in the NIa-protease coding region. Replacement of this sequence with a plant intron restored infectivity and maintained plasmid stability. In addition to restoring plasmid growth in both E. coli and Agrobacterium, the presence of the intron in the PepMoV sequence enhanced the accumulation of PepMoV in agroinfiltrated leaves and resulted in symptom induction in upper systemic leaves that was nearly as strong as with PepMoV sap-inoculation. Plant introns have been previously used to stabilize plasmids in E. coli without any effect or with an unexpected lag in symptom development. In contrast, the current results demonstrated the in vivo enhancement of an infectious clone by a plant intron.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Streamlined generation of plant virus infectious clones using the pLX mini binary vectors. J Virol Methods 2018; 262:48-55. [DOI: 10.1016/j.jviromet.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
10
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
11
|
Cervera H, Ambrós S, Bernet GP, Rodrigo G, Elena SF. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Mol Biol Evol 2018; 35:1599-1615. [PMID: 29562354 PMCID: PMC5995217 DOI: 10.1093/molbev/msy038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo P Bernet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
12
|
Cervera H, Lalić J, Elena SF. Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc Biol Sci 2017; 283:rspb.2016.0984. [PMID: 27534955 DOI: 10.1098/rspb.2016.0984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022] Open
Abstract
Predicting viral evolution has proven to be a particularly difficult task, mainly owing to our incomplete knowledge of some of the fundamental principles that drive it. Recently, valuable information has been provided about mutation and recombination rates, the role of genetic drift and the distribution of mutational, epistatic and pleiotropic fitness effects. However, information about the topography of virus' adaptive landscapes is still scarce, and to our knowledge no data has been reported so far on how its ruggedness may condition virus' evolvability. Here, we show that populations of an RNA virus move efficiently on a rugged landscape and scape from the basin of attraction of a local optimum. We have evolved a set of Tobacco etch virus genotypes located at increasing distances from a local adaptive optimum in a highly rugged fitness landscape, and we observed that few evolved lineages remained trapped in the local optimum, while many others explored distant regions of the landscape. Most of the diversification in fitness among the evolved lineages was explained by adaptation, while historical contingency and chance events contribution was less important. Our results demonstrate that the ruggedness of adaptive landscapes is not an impediment for RNA viruses to efficiently explore remote parts of it.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Jasna Lalić
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA. Multiple T-DNA Delivery to Plants Using Novel Mini Binary Vectors with Compatible Replication Origins. ACS Synth Biol 2017; 6:1962-1968. [PMID: 28657330 DOI: 10.1021/acssynbio.6b00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improved plants are necessary to meet human needs. Agrobacterium-mediated transformation is the most common method used to rewire plant capabilities. For plant gene delivery, DNA constructs are assembled into binary T-DNA vectors that rely on broad host range origins for bacterial replication. Here we present pLX vectors, a set of mini binary T-DNA plasmids suitable for Type IIS restriction endonuclease- and overlap-based assembly methods. pLX vectors include replicons from compatible broad host range plasmids. Simultaneous usage of pBBR1- and RK2-based pLX vectors in a two-plasmid/one-Agrobacterium strain strategy allowed multigene delivery to plants. Adoption of pLX vectors will facilitate routine plant transformations and targeted mutagenesis, as well as complex part and circuit characterization.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Leonor C. Bedoya
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | |
Collapse
|
14
|
Tuo D, Fu L, Shen W, Li X, Zhou P, Yan P. Generation of stable infectious clones of plant viruses by using Rhizobium radiobacter for both cloning and inoculation. Virology 2017; 510:99-103. [PMID: 28715654 PMCID: PMC7173343 DOI: 10.1016/j.virol.2017.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023]
Abstract
A novel Rhizobium radiobacter (synonym Agrobacterium tumefaciens)-mediated approach was developed to generate stable infectious clones of plant viruses. This method uses R. radiobacter for both cloning and inoculation of infectious clones, bypassing the requirement of cloning in E. coli to avoid the instability. Only three steps are included in this method: (i) construct viral genome-encoding plasmids in vitro by one-step Gibson assembly; (ii) transform the assembled DNA products into R. radiobacter; (iii) inoculate plants with the R. radiobacter clones containing the viral genome. Stable infectious clones were obtained from two potyviruses papaya ringspot virus (PRSV) and papaya leaf distortion mosaic virus (PLDMV) using this method, whereas attempts utilizing "classical" E. coli cloning system failed repeatedly. This method is simple and efficient, and is promising for a wide application in generation of infectious clones of plant virus, especially for those which are instable in E. coli. A novel approach was developed to generate infectious clones of plant viruses. It uses R. radiobacter for both cloning and inoculation of infectious clones. It bypasses the requirement of cloning in E. coli to avoid the instability. Stable infectious clones of PRSV and PLDMV were obtained using this method.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lanlan Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
15
|
Cordero T, Mohamed MA, López-Moya JJ, Daròs JA. A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Front Microbiol 2017; 8:611. [PMID: 28428782 PMCID: PMC5382215 DOI: 10.3389/fmicb.2017.00611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering.
Collapse
Affiliation(s)
- Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia)Valencia, Spain
| | - Mohamed A. Mohamed
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia)Valencia, Spain
| | - Juan-José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas – Institut de Recerca i Tecnologia Agroalimentaries – Universitat Autònoma de Barcelona – Universitat de BarcelonaBarcelona, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia)Valencia, Spain
| |
Collapse
|
16
|
Willemsen A, Zwart MP, Ambrós S, Carrasco JL, Elena SF. 2b or Not 2b: Experimental Evolution of Functional Exogenous Sequences in a Plant RNA Virus. Genome Biol Evol 2017; 9:297-310. [PMID: 28137747 PMCID: PMC5381683 DOI: 10.1093/gbe/evw300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Horizontal gene transfer (HGT) is pervasive in viruses and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here, we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus. We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, Cedex, France
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- Present address: Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - José L. Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
17
|
Majer E, Llorente B, Rodríguez-Concepción M, Daròs JA. Rewiring carotenoid biosynthesis in plants using a viral vector. Sci Rep 2017; 7:41645. [PMID: 28139696 PMCID: PMC5282570 DOI: 10.1038/srep41645] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Centíficas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Centíficas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
18
|
Cordero T, Cerdán L, Carbonell A, Katsarou K, Kalantidis K, Daròs JA. Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:63-71. [PMID: 27958768 DOI: 10.1094/mpmi-11-16-0239-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) induces serious diseases in cucurbits. To create a tool to screen for resistance genes, we cloned a wild ZYMV isolate and inserted the visual marker Rosea1 to obtain recombinant clone ZYMV-Ros1. While in some plant-virus combinations Rosea1 induces accumulation of anthocyanins in infected tissues, ZYMV-Ros1 infection of cucurbits did not lead to detectable anthocyanin accumulation. However, the recombinant virus did induce dark red pigmentation in infected tissues of the model plant Nicotiana benthamiana. In this species, ZYMV-Ros1 multiplied efficiently in local inoculated tissue but only a few progeny particles established infection foci in upper leaves. We used this system to analyze the roles of Dicer-like (DCL) genes, core components of plant antiviral RNA silencing pathways, in ZYMV infection. ZYMV-Ros1 local replication was not significantly affected in single DCL knockdown lines nor in double DCL2/4 and triple DCL2/3/4 knockdown lines. ZYMV-Ros1 systemic accumulation was not affected in knockdown lines DCL1, DCL2, and DCL3. However in DCL4 and also in DCL2/4 and DCL2/3/4 knockdown lines, ZYMV-Ros1 systemic accumulation dramatically increased, which highlights the key role of DCL4 in restricting virus systemic movement. The effect of DCL4 on ZYMV systemic movement was confirmed with a wild-type version of the virus.
Collapse
Affiliation(s)
- Teresa Cordero
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Lidia Cerdán
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Alberto Carbonell
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Konstantina Katsarou
- 2 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology; and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- 2 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology; and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - José-Antonio Daròs
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| |
Collapse
|
19
|
Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus. J Virol 2016; 90:10160-10169. [PMID: 27581976 DOI: 10.1128/jvi.01243-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptive fitness landscapes are a fundamental concept in evolutionary biology that relate the genotypes of individuals to their fitness. In the end, the evolutionary fate of evolving populations depends on the topography of the landscape, that is, the numbers of accessible mutational pathways and possible fitness peaks (i.e., adaptive solutions). For a long time, fitness landscapes were only theoretical constructions due to a lack of precise information on the mapping between genotypes and phenotypes. In recent years, however, efforts have been devoted to characterizing the properties of empirical fitness landscapes for individual proteins or for microbes adapting to artificial environments. In a previous study, we characterized the properties of the empirical fitness landscape defined by the first five mutations fixed during adaptation of tobacco etch potyvirus (TEV) to a new experimental host, Arabidopsis thaliana Here we evaluate the topography of this landscape in the ancestral host Nicotiana tabacum By comparing the topographies of the landscapes for the two hosts, we found that some features remained similar, such as the existence of fitness holes and the prevalence of epistasis, including cases of sign and reciprocal sign epistasis that created rugged, uncorrelated, and highly random topographies. However, we also observed significant differences in the fine-grained details between the two landscapes due to changes in the fitness and epistatic interactions of some genotypes. Our results support the idea that not only fitness tradeoffs between hosts but also topographical incongruences among fitness landscapes in alternative hosts may contribute to virus specialization. IMPORTANCE Despite its importance for understanding virus evolutionary dynamics, very little is known about the topography of virus adaptive fitness landscapes, and even less is known about the effects that different host species and environmental conditions may have on this topography. To bridge this gap, we evaluated the topography of a small fitness landscape formed by all genotypes that result from every possible combination of the first five mutations fixed during adaptation of TEV to the novel host A. thaliana To assess the effect that host species may have on this topography, we evaluated the fitness of every genotype in both the ancestral and novel hosts. We found that both landscapes share some macroscopic properties, such as the existence of holes and being highly rugged and uncorrelated, yet they differ in microscopic details due to changes in the magnitude and sign of fitness and epistatic effects.
Collapse
|
20
|
Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF. Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biol Evol 2016; 8:3065-3082. [PMID: 27604880 PMCID: PMC5633665 DOI: 10.1093/gbe/evw219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes, particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a significant reduction in viral fitness. Moreover, upon analyzing the genomes of the evolved viruses, we always observed the deletion of the duplicated gene copy and maintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the experimental data, we developed a mathematical model to characterize the stability of genetically redundant sequences, and showed that fitness effects are not enough to predict genomic stability. A context-dependent recombination rate is also required, with the context being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene duplications in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the likelihood of the maintenance of duplicated genes.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: Institute of Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Pablo Higueras
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain
| | - Josep Sardanyés
- ICREA Complex Systems Laboratory, Universitat Pompeu Fabra, Barcelona, Spain Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Instituto de Biología Integrativa y de Sistems (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Parc Científic de la Universitat de València, Paterna, València, Spain The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
21
|
Cervera H, Elena SF. Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evol 2016; 2:vew006. [PMID: 27774299 PMCID: PMC4989883 DOI: 10.1093/ve/vew006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
A long-standing observation in evolutionary virology is that RNA virus populations are highly polymorphic, composed by a mixture of genotypes whose abundances in the population depend on complex interaction between fitness differences, mutational coupling and genetic drift. It was shown long ago, though in cell cultures, that most of these genotypes had lower fitness than the population they belong, an observation that explained why single-virion passages turned on Muller’s ratchet while very large population passages resulted in fitness increases in novel environments. Here we report the results of an experiment specifically designed to evaluate in vivo the fitness differences among the subclonal components of a clonal population of the plant RNA virus tobacco etch potyvirus (TEV). Over 100 individual biological subclones from a TEV clonal population well adapted to the natural tobacco host were obtained by infectivity assays on a local lesion host. The replicative fitness of these subclones was then evaluated during infection of tobacco relative to the fitness of large random samples taken from the starting clonal population. Fitness was evaluated at increasing number of days post-inoculation. We found that at early days, the average fitness of subclones was significantly lower than the fitness of the clonal population, thus confirming previous observations that most subclones contained deleterious mutations. However, as the number of days of viral replication increases, population size expands exponentially, more beneficial and compensatory mutations are produced, and selection becomes more effective in optimizing fitness, the differences between subclones and the population disappeared.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain; The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
22
|
Multiple Barriers to the Evolution of Alternative Gene Orders in a Positive-Strand RNA Virus. Genetics 2016; 202:1503-21. [PMID: 26868766 DOI: 10.1534/genetics.115.185017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/07/2016] [Indexed: 01/06/2023] Open
Abstract
The order in which genes are organized within a genome is generally not conserved between distantly related species. However, within virus orders and families, strong conservation of gene order is observed. The factors that constrain or promote gene-order diversity are largely unknown, although the regulation of gene expression is one important constraint for viruses. Here we investigate why gene order is conserved for a positive-strand RNA virus encoding a single polyprotein in the context of its authentic multicellular host. Initially, we identified the most plausible trajectory by which alternative gene orders could evolve. Subsequently, we studied the accessibility of key steps along this evolutionary trajectory by constructing two virus intermediates: (1) duplication of a gene followed by (2) loss of the ancestral gene. We identified five barriers to the evolution of alternative gene orders. First, the number of viable positions for reordering is limited. Second, the within-host fitness of viruses with gene duplications is low compared to the wild-type virus. Third, after duplication, the ancestral gene copy is always maintained and never the duplicated one. Fourth, viruses with an alternative gene order have even lower fitness than viruses with gene duplications. Fifth, after more than half a year of evolution in isolation, viruses with an alternative gene order are still vastly inferior to the wild-type virus. Our results show that all steps along plausible evolutionary trajectories to alternative gene orders are highly unlikely. Hence, the inaccessibility of these trajectories probably contributes to the conservation of gene order in present-day viruses.
Collapse
|
23
|
Martínez F, Rodrigo G, Aragonés V, Ruiz M, Lodewijk I, Fernández U, Elena SF, Daròs JA. Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics 2016; 17:87. [PMID: 26830344 PMCID: PMC4735970 DOI: 10.1186/s12864-016-2394-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The genomes of plant viruses have limited coding capacity, and to complete their infectious cycles, viral factors must target, direct or indirectly, many host elements. However, the interaction networks between viruses and host factors are poorly understood. The genus Potyvirus is the largest group of plus-strand RNA viruses infecting plants. Potyviral nuclear inclusion a (NIa) plays many roles during infection. NIa is a polyprotein consisting of two domains, viral protein genome-linked (VPg) and protease (NIaPro), separated by an inefficiently utilized self-proteolytic site. To gain insights about the interaction between potyviral NIa and the host cell during infection, we constructed Tobacco etch virus (TEV, genus Potyvirus) infectious clones in which the VPg or the NIaPro domains of NIa were tagged with the affinity polypeptide Twin-Strep-tag and identified the host proteins targeted by the viral proteins by affinity purification followed by mass spectrometry analysis (AP-MS). RESULTS We identified 232 different Arabidopsis thaliana proteins forming part of complexes in which TEV NIa products were also involved. VPg and NIaPro specifically targeted 89 and 76 of these proteins, respectively, whereas 67 proteins were targeted by both domains and considered full-length NIa targets. Taking advantage of the currently known A. thaliana interactome, we constructed a protein interaction network between TEV NIa domains and 516 host proteins. The most connected elements specifically targeted by VPg were G-box regulating factor 6 and mitochondrial ATP synthase δ subunit; those specifically targeted by NIaPro were plasma membrane aquaporin PIP2;7 and actin 7, whereas those targeted by full-length NIa were heat shock protein 70-1 and photosystem protein LHCA3. Moreover, a contextualization in the global A. thaliana interactome showed that NIa targets are not more connected with other host proteins than expected by chance, but are in a position that allows them to connect with other host proteins in shorter paths. Further analysis of NIa-targeted host proteins revealed that they are mainly involved in response to stress, metabolism, photosynthesis, and localization. Many of these proteins are connected with the phytohormone ethylene. CONCLUSIONS Potyviral NIa targets many host elements during infection, establishing a network in which information is efficiently transmitted.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Marta Ruiz
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Iris Lodewijk
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Unai Fernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
- The Santa Fe Institute, Santa Fe, NM, USA.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
24
|
Bernet GP, Elena SF. Distribution of mutational fitness effects and of epistasis in the 5' untranslated region of a plant RNA virus. BMC Evol Biol 2015; 15:274. [PMID: 26643527 PMCID: PMC4672503 DOI: 10.1186/s12862-015-0555-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the causes and consequences of phenotypic variability is a central topic of evolutionary biology. Mutations within non-coding cis-regulatory regions are thought to be of major effect since they affect the expression of downstream genes. To address the evolutionary potential of mutations affecting such regions in RNA viruses, we explored the fitness properties of mutations affecting the 5'-untranslated region (UTR) of a prototypical member of the picorna-like superfamily, Tobacco etch virus (TEV). This 5' UTR acts as an internal ribosomal entry site (IRES) and is essential for expression of all viral genes. RESULTS We determined in vitro the folding of 5' UTR using the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) technique. Then, we created a collection of single-nucleotide substitutions on this region and evaluated the statistical properties of their fitness effects in vivo. We found that, compared to random mutations affecting coding sequences, mutations at the 5' UTR were of weaker effect. We also created double mutants by combining pairs of these single mutations and found variation in the magnitude and sign of epistatic interactions, with an enrichment of cases of positive epistasis. A correlation exists between the magnitude of fitness effects and the size of the perturbation made in the RNA folding structure, suggesting that the larger the departure from the predicted fold, the more negative impact in viral fitness. CONCLUSIONS Evidence that mutational fitness effects on the short 5' UTR regulatory sequence of TEV are weaker than those affecting its coding sequences have been found. Epistasis among pairs of mutations on the 5' UTR ranged between the extreme cases of synthetic lethal and compensatory. A plausible hypothesis to explain all these observations is that the interaction between the 5' UTR and the host translational machinery was shaped by natural selection to be robust to mutations, thus ensuring the homeostatic expression of viral genes even at high mutation rates.
Collapse
Affiliation(s)
- Guillermo P Bernet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain.
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain.
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
25
|
Tuo D, Shen W, Yan P, Li X, Zhou P. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning. Viruses 2015; 7:6241-50. [PMID: 26633465 PMCID: PMC4690859 DOI: 10.3390/v7122935] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli.In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
26
|
Lalić J, Elena SF. The impact of high-order epistasis in the within-host fitness of a positive-sense plant RNA virus. J Evol Biol 2015; 28:2236-47. [PMID: 26344415 DOI: 10.1111/jeb.12748] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
RNA viruses are the main source of emerging infectious diseases because of the evolutionary potential bestowed by their fast replication, large population sizes and high mutation and recombination rates. However, an equally important property, which is usually neglected, is the topography of the fitness landscape. How many fitness maxima exist and how well they are connected is especially interesting, as this determines the number of accessible evolutionary pathways. To address this question, we have reconstructed a region of the fitness landscape of tobacco etch potyvirus constituted by mutations observed during the experimental adaptation of the virus to the novel host Arabidopsis thaliana. Fitness was measured for many genotypes and showed the existence of multiple peaks and holes in the landscape. We found prevailing epistatic effects between mutations, with cases of reciprocal sign epistasis being common among pairs of mutations. We also found that high-order epistasis was as important as pairwise epistasis in their contribution to fitness. Therefore, results suggest that the landscape was rugged due to the existence of holes caused by lethal genotypes, that a very limited number of potential neutral paths exist and that it contained a single adaptive peak.
Collapse
Affiliation(s)
- J Lalić
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, València, Spain
| | - S F Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
27
|
Majer E, Navarro JA, Daròs JA. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 2015; 10:1792-802. [PMID: 26147811 DOI: 10.1002/biot.201500042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/11/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
28
|
Cuevas JM, Willemsen A, Hillung J, Zwart MP, Elena SF. Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Mol Biol Evol 2015; 32:1132-47. [PMID: 25660377 DOI: 10.1093/molbev/msv028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Populations of plant RNA viruses are highly polymorphic in infected plants, which may allow rapid within-host evolution. To understand tobacco etch potyvirus (TEV) evolution, longitudinal samples from experimentally evolved populations in the natural host tobacco and from the alternative host pepper were phenotypically characterized and genetically analyzed. Temporal and compartmental variabilities of TEV populations were quantified using high throughput Illumina sequencing and population genetic approaches. Of the two viral phenotypic traits measured, virulence increased in the novel host but decreased in the original one, and viral load decreased in both hosts, though to a lesser extent in the novel one. Dynamics of population genetic diversity were also markedly different among hosts. Population heterozygosity increased in the ancestral host, with a dominance of synonymous mutations fixed, whereas it did not change or even decreased in the new host, with an excess of nonsynonymous mutations. All together, these observations suggest that directional selection is the dominant evolutionary force in TEV populations evolving in a novel host whereas either diversifying selection or random genetic drift may play a fundamental role in the natural host. To better understand these evolutionary dynamics, we developed a computer simulation model that incorporates the effects of mutation, selection, and drift. Upon parameterization with empirical data from previous studies, model predictions matched the observed patterns, thus reinforcing our idea that the empirical patterns of mutation accumulation represent adaptive evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
29
|
Martínez F, Daròs JA. Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. J Virol 2014; 88:10725-37. [PMID: 24991017 PMCID: PMC4178839 DOI: 10.1128/jvi.00928-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The genus Potyvirus comprises a large group of positive-strand RNA plant viruses whose genome encodes a large polyprotein processed by three viral proteinases. P1 protein, the most amino-terminal product of the polyprotein, is an accessory factor stimulating viral genome amplification whose role during infection is not well understood. We infected plants with Tobacco etch virus (TEV; genus Potyvirus) clones in which P1 was tagged with a fluorescent protein to track its expression and subcellular localization or with an affinity tag to identify host proteins involved in complexes in which P1 also takes part during infection. Our results showed that TEV P1 exclusively accumulates in infected cells at an early stage of infection and that the protein displays a dynamic subcellular localization, trafficking in and out of the nucleus and nucleolus during infection. Inside the nucleolus, P1 particularly targets the dense granular component. Consistently, we found functional nucleolar localization and nuclear export signals in TEV P1 sequence. Our results also indicated that TEV P1 physically interacts with the host 80S cytoplasmic ribosomes and specifically binds to the 60S ribosomal subunits during infection. In vitro translation assays of reporter proteins suggested that TEV P1 stimulates protein translation, particularly when driven from the TEV internal ribosome entry site. These in vitro assays also suggested that TEV helper-component proteinase (HC-Pro) inhibits protein translation. Based on these findings, we propose that TEV P1 stimulates translation of viral proteins in infected cells. IMPORTANCE In this work, we researched the role during infection of tobacco etch virus P1 protease. P1 is the most mysterious protein of potyviruses, a relevant group of RNA viruses infecting plants. Our experiments showed that the viral P1 protein exclusively accumulates in infected cells at an early stage of infection and moves in and out of the nucleus of infected cells, particularly targeting the nucleolus. Our experiments also showed that P1 protein binds host ribosomes during infection. Based on these findings and other in vitro experiments we propose that P1 protein stimulates translation of viral proteins during infection.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
30
|
Majer E, Salvador Z, Zwart MP, Willemsen A, Elena SF, Daròs JA. Relocation of the NIb gene in the tobacco etch potyvirus genome. J Virol 2014; 88:4586-90. [PMID: 24453370 PMCID: PMC3993717 DOI: 10.1128/jvi.03336-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/16/2014] [Indexed: 11/20/2022] Open
Abstract
Potyviruses express most of their proteins from a long open reading frame that is translated into a large polyprotein processed by three viral proteases. To understand the constraints on potyvirus genome organization, we relocated the viral RNA-dependent RNA polymerase (NIb) cistron to all possible intercistronic positions of the Tobacco etch virus (TEV) polyprotein. Only viruses with NIb at the amino terminus of the polyprotein or in between P1 and HC-Pro were viable in tobacco plants.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zaira Salvador
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
31
|
Tromas N, Zwart MP, Forment J, Elena SF. Shrinkage of genome size in a plant RNA virus upon transfer of an essential viral gene into the host genome. Genome Biol Evol 2014; 6:538-50. [PMID: 24558257 PMCID: PMC3971587 DOI: 10.1093/gbe/evu036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 11/12/2022] Open
Abstract
Nonretroviral integrated RNA viruses (NIRVs) are genes of nonretroviral RNA viruses found in the genomes of many eukaryotic organisms. NIRVs are thought to sometimes confer virus resistance, meaning that they could impact spread of the virus in the host population. However, a NIRV that is expressed may also impact the evolution of virus populations within host organisms. Here, we experimentally addressed the evolution of a virus in a host expressing a NIRV using Tobacco etch virus (TEV), a plant RNA virus, and transgenic tobacco plants expressing its replicase, NIb. We found that a virus missing the NIb gene, TEV-ΔNIb, which is incapable of autonomous replication in wild-type plants, had a higher fitness than the full-length TEV in the transgenic plants. Moreover, when the full-length TEV was evolved by serial passages in transgenic plants, we observed genomic deletions within NIb--and in some cases the adjacent cistrons--starting from the first passage. When we passaged TEV and TEV-ΔNIb in transgenic plants, we found mutations in proteolytic sites, but these only occurred in TEV-ΔNIb lineages, suggesting the adaptation of polyprotein processing to altered NIb expression. These results raise the possibility that NIRV expression can indeed induce the deletion of the corresponding genes in the viral genome, resulting in the formation of viruses that are replication defective in hosts that do not express the same NIRV. Moreover, virus genome evolution was contingent upon the deletion of the viral replicase, suggesting NIRV expression could also alter patterns of virus evolution.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
32
|
Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet 2014; 10:e1004186. [PMID: 24586207 PMCID: PMC3937225 DOI: 10.1371/journal.pgen.1004186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 11/27/2022] Open
Abstract
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
33
|
Zwart MP, Willemsen A, Daròs JA, Elena SF. Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol 2014; 31:121-34. [PMID: 24109604 PMCID: PMC3879446 DOI: 10.1093/molbev/mst175] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved highly streamlined genomes and a variety of mechanisms to compress them, suggesting that genome size is under strong selection. Horizontal gene transfer has, on the other hand, played an important role in virus evolution. However, evolution cannot integrate initially nonfunctional sequences into the viral genome if they are rapidly purged by selection. Here we report on the experimental evolution of pseudogenization in virus genomes using a plant RNA virus expressing a heterologous gene. When long 9-week passages were performed, the added gene was lost in all lineages, whereas viruses with large genomic deletions were fixed in only two out of ten 3-week lineages and none in 1-week lineages. Illumina next-generation sequencing revealed considerable convergent evolution in the 9- and 3-week lineages with genomic deletions. Genome size was correlated to within-host competitive fitness, although there was no correlation with virus accumulation or virulence. Within-host competitive fitness of the 3-week virus lineages without genomic deletions was higher than for the 1-week lineages. Our results show that the strength of selection for a reduced genome size and the rate of pseudogenization depend on demographic conditions. Moreover, for the 3-week passage condition, we observed increases in within-host fitness, whereas selection was not strong enough to quickly remove the nonfunctional heterologous gene. These results suggest a demographically determined "sweet spot" might exist, where heterologous insertions are not immediately lost while evolution can act to integrate them into the viral genome.
Collapse
Affiliation(s)
- Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute
| |
Collapse
|
34
|
Majer E, Daròs JA, Zwart MP. Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 2013; 5:2153-68. [PMID: 24022073 PMCID: PMC3798895 DOI: 10.3390/v5092153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Antirrhinum majus Rosea1 (Ros1) is an MYB-related transcription factor that induces anthocyanin biosynthesis in plant tissues, and has been shown to be suitable for visual tracking of virus infection in plants. However, activation of anthocyanin biosynthesis has far reaching effects on plant physiology and could consequently have negative effects on viral replication. Therefore, viruses carrying the Ros1 marker might have a low fitness and consequently rapidly lose the marker. To compare the stability of the Ros1 marker, we generated Tobacco etch virus (TEV) based constructs containing either Ros1 or the enhanced green fluorescent protein (eGFP) between the NIb and CP cistrons (TEV-Ros1 and TEV-eGFP, respectively). We measured the within-host competitive fitness of both viruses by direct competitions with a common competitor during infection of Nicotiana tabacum. The fitness of TEV-Ros1 was significantly lower than that of TEV-eGFP, and both recombinant viruses had a significantly lower fitness than the wild-type virus. Nevertheless, after seven weeks of infection in N. tabacum, similar levels of marker gene instability where found for both viruses. Despite lower fitness of the marked virus, Ros1 is therefore a viable alternative marker for tracking viral infection in plants.
Collapse
Affiliation(s)
| | | | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain; E-Mails: (E.M.); (J.-A.D.)
| |
Collapse
|
35
|
Xiong R, Wang A. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol 2013; 87:4704-15. [PMID: 23365455 PMCID: PMC3624346 DOI: 10.1128/jvi.02828-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/24/2013] [Indexed: 12/19/2022] Open
Abstract
SUMOylation, which is catalyzed by small ubiquitin-like modifier (SUMO) enzymes, is a transient, reversible posttranslational protein modification that regulates diverse cellular processes. Potyviruses, the largest group of known plant viruses, comprise many agriculturally important viruses, such as Turnip mosaic virus (TuMV). The potyviral genome encodes 11 mature proteins. To investigate if SUMOylation plays a role in potyvirus infection, a yeast two-hybrid screen was performed to examine possible interactions of each of the 11 viral proteins of TuMV with AtSCE1, the only SUMO-conjugating enzyme in Arabidopsis thaliana homologous to the key SUMO-conjugating enzyme E2 in mammalian cells or Ubc9 in yeast. A positive reaction was found between AtSCE1 and NIb, the potyviral RNA-dependent RNA polymerase. Further bimolecular fluorescence complementation (BiFC) and fluorescence resonance energy transfer (FRET) assays revealed that the NIb and AtSCE1 interaction occurred in both the cytoplasm and nuclei of epidermal cells of Nicotiana benthamiana. The interaction motif was mapped to a region encompassing NIb amino acids 171 to 300 which contains a potential negatively charged amino acid-dependent SUMOylation motif (NDSM). An Escherichia coli SUMOylation assay showed that NIb can be SUMOylated and that the lysine residue (K172) in the motif is a potent SUMOylation site. A TuMV infectious clone with an arginine (R) substitution mutation at K172 compromised TuMV infectivity in plants. In comparison with wild-type Arabidopsis plants, sce1 knockdown plants exhibited increased resistance to TuMV as well as a nonrelated RNA virus. To the best of our knowledge, this is the first report showing that the host SUMO modification system plays an essential role in infection by plant RNA viruses.
Collapse
Affiliation(s)
- Ruyi Xiong
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | | |
Collapse
|
36
|
Contreras-Paredes CA, Silva-Rosales L, Daròs JA, Alejandri-Ramírez ND, Dinkova TD. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:461-70. [PMID: 23252462 DOI: 10.1094/mpmi-09-12-0225-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Translation initiation factor eIF4E exerts an important role during infection of viral species in the family Potyviridae. Particularly, a eIF(iso)4E family member is required for Arabidopsis thaliana susceptibility to Turnip mosaic virus, Lettuce mosaic virus, and Tobacco etch virus (TEV). In addition, a resistance mechanism named restriction of TEV movement (RTM) in A. thaliana controls the systemic spread of TEV in Col-0 ecotype. Here, we describe that TEV-TAMPS, a Mexican isolate, overcomes the RTM resistance mechanism reported for TEV-7DA infection of the Col-0 ecotype but depends on eIF(iso)4E for its systemic spread. To understand at which level eIF(iso)4E participates in A. thaliana TEV-TAMPS infection, the viral RNA replication and translation were measured. The absence or overexpression of eIF(iso)4E did not affect viral translation, and replication was still observed in the absence of eIF(iso)4E. However, the TEV-TAMPS systemic spread was completely abolished in the null mutant. The viral protein genome-linked (VPg) precursor NIa was found in coimmunoprecipitated complexes with both, eIF(iso)4E and eIF4E. However, the viral coat protein (CP) was only present in the eIF(iso)4E complexes. Since both the VPg and the CP proteins are needed for systemic spread, we propose a role of A. thaliana eIF(iso)4E in the movement of TEV-TAMPS within this host.
Collapse
|
37
|
Lalić J, Elena SF. Epistasis between mutations is host-dependent for an RNA virus. Biol Lett 2013; 9:20120396. [PMID: 22809724 PMCID: PMC3565478 DOI: 10.1098/rsbl.2012.0396] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022] Open
Abstract
How, and to what extent, does the environment influence the way mutations interact? Do environmental changes affect both the sign and the magnitude of epistasis? Are there any correlations between environments in the variability, sign or magnitude of epistasis? Very few studies have tackled these questions. Here, we addressed them in the context of viral emergence. Most emerging viruses are RNA viruses with small genomes, overlapping reading frames and multifunctional proteins for which epistasis is abundant. Understanding the effect of host species in the sign and magnitude of epistasis will provide insights into the evolutionary ecology of infectious diseases and the predictability of viral emergence.
Collapse
Affiliation(s)
- Jasna Lalić
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València, Spain
- Santa Fe Institute, Santa Fe NM 87501, USA
| |
Collapse
|
38
|
Bedhomme S, Lafforgue G, Elena SF. Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evol Biol 2013; 13:46. [PMID: 23421472 PMCID: PMC3598485 DOI: 10.1186/1471-2148-13-46] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The importance of historical contingency in determining the potential of viral populations to evolve has been largely unappreciated. Identifying the constraints imposed by past adaptations is, however, of importance for understanding many questions in evolutionary biology, such as the evolution of host usage dynamics by multi-host viruses or the emergence of escape mutants that persist in the absence of antiviral treatments. To address this issue, we undertook an experimental approach in which sixty lineages of Tobacco etch potyvirus that differ in their past evolutionary history and degree of adaptation to Nicotiana tabacum were allowed to adapt to this host for 15 rounds of within host multiplication and transfer. We thereafter evaluated the degree of adaptation to the new host as well as to the original ones and characterized the consensus sequence of each lineage. RESULTS We found that past evolutionary history did not determine the phenotypic outcome of this common host evolution phase, and that the signal of local adaptation to past hosts had largely disappeared. By contrast, evolutionary history left footprints at the genotypic level, since the majority of host-specific mutations present at the beginning of this experiment were retained in the end-point populations and may have affected which new mutations were consequently fixed. This resulted in further divergence between the sequences despite a shared selective environment. CONCLUSIONS The present experiment reinforces the idea that the answer to the question "How important is historical contingency in evolution?" strongly depends on the level of integration of the traits studied. A strong historical contingency was found for TEV genotype, whereas a weak effect of on phenotypic evolution was revealed. In an applied context, our results imply that viruses are not easily trapped into suboptimal phenotypes and that (re)emergence is not evolutionarily constrained.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
- Present address: Infections and Cancer, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
- The Santa Fe Institute, Santa Fe, 87501, New Mexico
| |
Collapse
|
39
|
Bejerman N, Giolitti F, de Breuil S, Lenardon S. Development of a full-length infectious clone of sunflower chlorotic mottle virus (SuCMoV). Arch Virol 2013; 158:485-90. [PMID: 23081677 DOI: 10.1007/s00705-012-1497-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
A full-length cDNA clone (p35SuCMoV) of the sunflower chlorotic mottle virus common strain (SuCMoV-C) genomic RNA was constructed. Three cDNA fragments covering the whole genome of SuCMoV-C were cloned between a cauliflower mosaic virus 35S promoter and a nopaline synthase terminator. Mechanical inoculation of sunflower and Nicotiana occidentalis seedlings with p35SuCMoV DNA led to systemic infection. Symptoms induced by p35SuCMoV were similar to those caused by the wild-type SuCMoV-C but appeared four days later. Infection was confirmed by a western blot test, electron microscopy, RT-PCR and inoculation of progeny virions to sunflower seedlings. This is the first report about the construction of a biologically active, full-length cDNA copy of the SuCMoV-C RNA genome.
Collapse
Affiliation(s)
- N Bejerman
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras Km 5,5, X5020ICA, Córdoba, Argentina.
| | | | | | | |
Collapse
|
40
|
Lalić J, Elena SF. Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity (Edinb) 2012; 109:71-7. [PMID: 22491062 PMCID: PMC3400743 DOI: 10.1038/hdy.2012.15] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/21/2012] [Accepted: 02/28/2012] [Indexed: 11/09/2022] Open
Abstract
How epistatic interactions between mutations determine the genetic architecture of fitness is of central importance in evolution. The study of epistasis is particularly interesting for RNA viruses because of their genomic compactness, lack of genetic redundancy, and apparent low complexity. Moreover, interactions between mutations in viral genomes determine traits such as resistance to antiviral drugs, virulence and host range. In this study we generated 53 Tobacco etch potyvirus genotypes carrying pairs of single-nucleotide substitutions and measured their separated and combined deleterious fitness effects. We found that up to 38% of pairs had significant epistasis for fitness, including both positive and negative deviations from the null hypothesis of multiplicative effects. Interestingly, the sign of epistasis was correlated with viral protein-protein interactions in a model network, being predominantly positive between linked pairs of proteins and negative between unlinked ones. Furthermore, 55% of significant interactions were cases of reciprocal sign epistasis (RSE), indicating that adaptive landscapes for RNA viruses maybe highly rugged. Finally, we found that the magnitude of epistasis correlated negatively with the average effect of mutations. Overall, our results are in good agreement to those previously reported for other viruses and further consolidate the view that positive epistasis is the norm for small and compact genomes that lack genetic robustness.
Collapse
Affiliation(s)
- J Lalić
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain and
| | - S F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain and
- Santa Fe Institute, Santa Fe NM, USA
| |
Collapse
|
41
|
Bedoya LC, Martínez F, Orzáez D, Daròs JA. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. PLANT PHYSIOLOGY 2012; 158:1130-8. [PMID: 22238422 PMCID: PMC3291247 DOI: 10.1104/pp.111.192922] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/11/2012] [Indexed: 05/20/2023]
Abstract
Insertion of reporter genes into plant virus genomes is a common experimental strategy to research many aspects of the viral infection dynamics. Their numerous advantages make fluorescent proteins the markers of choice in most studies. However, the use of fluorescent proteins still has some limitations, such as the need of specialized material and facilities to detect the fluorescence. Here, we demonstrate a visual reporter marker system to track virus infection and movement through the plant. The reporter system is based on expression of Antirrhinum majus MYB-related Rosea1 (Ros1) transcription factor (220 amino acids; 25.7 kD) that activates a series of biosynthetic genes leading to accumulation of colored anthocyanins. Using two different tobacco etch potyvirus recombinant clones tagged with Ros1, we show that infected tobacco (Nicotiana tabacum) tissues turn bright red, demonstrating that in this context, the sole expression of Ros1 is sufficient to induce pigment accumulation to a level readily detectable to the naked eye. This marker system also reports viral load qualitatively and quantitatively by means of a very simple extraction process. The Ros1 marker remained stable within the potyvirus genome through successive infectious passages from plant to plant. The main limitation of this marker system is that color output will depend on each particular plant host-virus combination and must be previously tested. However, our experiments demonstrate accurate tracking of turnip mosaic potyvirus infecting Arabidopsis (Arabidopsis thaliana) and either tobacco mosaic virus or potato X virus infecting Nicotiana benthamiana, stressing the general applicability of the method.
Collapse
Affiliation(s)
| | | | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
42
|
Bedhomme S, Lafforgue G, Elena SF. Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Mol Biol Evol 2011; 29:1481-92. [DOI: 10.1093/molbev/msr314] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
43
|
Lalić J, Cuevas JM, Elena SF. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet 2011; 7:e1002378. [PMID: 22125497 PMCID: PMC3219607 DOI: 10.1371/journal.pgen.1002378] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/22/2011] [Indexed: 12/15/2022] Open
Abstract
Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host.
Collapse
Affiliation(s)
- Jasna Lalić
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, València, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
44
|
Zwart MP, Daròs JA, Elena SF. One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathog 2011; 7:e1002122. [PMID: 21750676 PMCID: PMC3131263 DOI: 10.1371/journal.ppat.1002122] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/02/2011] [Indexed: 11/19/2022] Open
Abstract
Effective population size (N(e)) determines the strength of genetic drift and the frequency of co-infection by multiple genotypes, making it a key factor in viral evolution. Experimental estimates of N(e) for different plant viruses have, however, rendered diverging results. The independent action hypothesis (IAH) states that each virion has a probability of infection, and that virions act independent of one another during the infection process. A corollary of IAH is that N(e) must be dose dependent. A test of IAH for a plant virus has not been reported yet. Here we perform a test of an IAH infection model using a plant RNA virus, Tobacco etch virus (TEV) variants carrying GFP or mCherry fluorescent markers, in Nicotiana tabacum and Capsicum annuum plants. The number of primary infection foci increased linearly with dose, and was similar to a Poisson distribution. At high doses, primary infection foci containing both genotypes were found at a low frequency (<2%). The probability that a genotype that infected the inoculated leaf would systemically infect that plant was near 1, although in a few rare cases genotypes could be trapped in the inoculated leaf by being physically surrounded by the other genotype. The frequency of mixed-genotype infection could be predicted from the mean number of primary infection foci using the independent-action model. Independent action appears to hold for TEV, and N(e) is therefore dose-dependent for this plant RNA virus. The mean number of virions causing systemic infection can be very small, and approaches 1 at low doses. Dose-dependency in TEV suggests that comparison of N(e) estimates for different viruses are not very meaningful unless dose effects are taken into consideration.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain.
| | | | | |
Collapse
|
45
|
Naderpour M, Johansen IE. Visualization of resistance responses in Phaseolus vulgaris using reporter tagged clones of Bean common mosaic virus. Virus Res 2011; 159:1-8. [PMID: 21549773 DOI: 10.1016/j.virusres.2011.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 02/03/2023]
Abstract
Reporter tagged virus clones can provide detailed information on virus-host interactions. In Phaseolus vulgaris (bean), four recessive and one dominant gene are known to control infection by strains of the potyvirus species Bean common mosaic virus (BCMV). To study the interactions between BCMV and bean genotypes with different resistance gene combinations, an infectious clone of the strain RU1 was tagged with the UidA gene encoding β-glucuronidase (GUS). The clone was agroinoculated to bean genotypes with different combinations of the resistance genes bc-u, bc-1, bc-2, bc-3 and I. In situ histochemical GUS assays showed new details of the resistance responses, which were previously analysed by immunological methods and symptom descriptions. In some instances GUS assays suggested that resistance breaking strains appeared at single foci in uninoculated leaves. To allow recovery of resistance breaking strains for further studies, BCMV RU1 was tagged with the sequence encoding green fluorescent protein (GFP), which was visualized directly without destruction of the tissue. In this paper we present details of the construction of the infectious clone and discuss its application in studies of BCMV resistance in bean.
Collapse
Affiliation(s)
- Masoud Naderpour
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | | |
Collapse
|