1
|
Tomatis C, León A, López Ortiz AO, Oneto P, Fuentes F, Ferrer MF, Carrera Silva EA, Scorticati C, Gómez RM. Theiler's Murine Encephalomyelitis Virus Replicates in Primary Neuron Cultures and Impairs Spine Density Formation. Neuroscience 2023; 529:162-171. [PMID: 37598833 DOI: 10.1016/j.neuroscience.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. NeuN + immunostaining showed an early and almost complete absence of positive cells in cultures infected with GDVII, an approximately 50% reduction in cultures infected with DA, and fewer changes in L*-1 strains at 3 dpi. Accordingly, staining with chloromethyltetramethylrosamine orange (Mitotracker OrangeTM) as a parameter for cell viability showed similar results. Moreover, at 1 dpi, the strain DA induced higher transcript levels of neuroprotective genes such as IFN-Iβ, IRF7, and IRF8. At 3 dpi, strains GDVII and DA, but not the L*-1 mutant, showed lower PKR expression. In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.
Collapse
Affiliation(s)
- Carla Tomatis
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina
| | - Aída O López Ortiz
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Paula Oneto
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Federico Fuentes
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - María F Ferrer
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Eugenio A Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Ricardo M Gómez
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
2
|
Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus. J Virol 2017; 91:JVI.00573-17. [PMID: 28446680 DOI: 10.1128/jvi.00573-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV.IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L, indicating that this virus originates from mice.
Collapse
|
3
|
Okuwa T, Sasaki Y, Matsuzaki Y, Himeda T, Yoshino N, Hongo S, Ohara Y, Muraki Y. The epitope sequence of S16, a monoclonal antibody against influenza C virus hemagglutinin-esterase fusion glycoprotein. Future Virol 2017. [DOI: 10.2217/fvl-2016-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aim: S16, a monoclonal antibody against the hemagglutinin-esterase fusion (HEF) glycoprotein of influenza C virus, reacts with SV40 large T antigen (LT) and a host cellular component(s). The aim is to determine the location of S16 linear epitope on LT and the amino acid sequence of S16 epitope. Materials & methods: BHK-21 cells expressing wild-type and mutant LTs, HEFs or GFPs, each of which was tagged with a FLAG epitope, were analyzed by immunoblotting using S16. Results & conclusions: An amino acid sequence 98-FNEENL-103 on LT forms a linear epitope recognized by S16. The sequence of S16 epitope was defined as F[NAT]EE[NYA]L, excluding FAEEAL and FTEEAL. This finding will be of help in identifying a host cellular component(s) crossreactive with S16.
Collapse
Affiliation(s)
- Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Present address: Yamagata Kosei Hospital, 255 Onigoe, Sugesawa, Yamagata 990–2362, Japan
| | - Yasushi Muraki
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
4
|
Sorgeloos F, Jha BK, Silverman RH, Michiels T. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L. PLoS Pathog 2013; 9:e1003474. [PMID: 23825954 PMCID: PMC3694852 DOI: 10.1371/journal.ppat.1003474] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus. Theiler's virus is a murine picornavirus (same family as poliovirus) which has a striking ability to establish persistent infections of the central nervous system. To do so, the virus has to counteract the immune response of the host and particularly the potent response mediated by interferon. We observed that a protein encoded by Theiler's virus, the L* protein, inhibited the RNase L pathway, one of the best-characterized pathways mediating the antiviral IFN response. In contrast to previously identified viral antagonists of this pathway, L* was found to act directly on RNase L, the effector enzyme of the pathway. L* activity was found to be species-specific as it inhibited murine but not human RNase L. We confirmed the species-specificity and the direct interaction between L* and RNase L in vitro, using purified proteins. Acting at the effector step in the pathway allows L* to block RNase L activity efficiently. This suggests that RNase L is particularly important to control Theiler's virus replication in vivo. Another virus, mouse hepatitis virus (MHV), was recently shown to interfere with RNase L activation. Theiler's virus and MHV share a marked tropism for macrophages which may suggest that the RNase L pathway is particularly important in this cell type.
Collapse
Affiliation(s)
| | - Babal Kant Jha
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio United States of America
| | - Thomas Michiels
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
- * E-mail:
| |
Collapse
|