1
|
Schönegger D, Marais A, Babalola BM, Faure C, Lefebvre M, Svanella-Dumas L, Brázdová S, Candresse T. Carrot populations in France and Spain host a complex virome rich in previously uncharacterized viruses. PLoS One 2023; 18:e0290108. [PMID: 37585477 PMCID: PMC10431682 DOI: 10.1371/journal.pone.0290108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
High-throughput sequencing (HTS) has proven a powerful tool to uncover the virome of cultivated and wild plants and offers the opportunity to study virus movements across the agroecological interface. The carrot model consisting of cultivated (Daucus carota ssp. sativus) and wild carrot (Daucus carota ssp. carota) populations, is particularly interesting with respect to comparisons of virus communities due to the low genetic barrier to virus flow since both population types belong to the same plant species. Using a highly purified double-stranded RNA-based HTS approach, we analyzed on a large scale the virome of 45 carrot populations including cultivated, wild and off-type carrots (carrots growing within the field and likely representing hybrids between cultivated and wild carrots) in France and six additional carrot populations from central Spain. Globally, we identified a very rich virome comprising 45 viruses of which 25 are novel or tentatively novel. Most of the identified novel viruses showed preferential associations with wild carrots, either occurring exclusively in wild populations or infecting only a small proportion of cultivated populations, indicating the role of wild carrots as reservoir of viral diversity. The carrot virome proved particularly rich in viruses involved in complex mutual interdependencies for aphid transmission such as poleroviruses, umbraviruses and associated satellites, which can be the basis for further investigations of synergistic or antagonistic virus-vector-host relationships.
Collapse
Affiliation(s)
- Deborah Schönegger
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Armelle Marais
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Bisola Mercy Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Madrid, Spain
| | - Chantal Faure
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Marie Lefebvre
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Laurence Svanella-Dumas
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Sára Brázdová
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Thierry Candresse
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| |
Collapse
|
2
|
Cassava Frogskin Disease: Current Knowledge on a Re-Emerging Disease in the Americas. PLANTS 2022; 11:plants11141841. [PMID: 35890475 PMCID: PMC9318364 DOI: 10.3390/plants11141841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Cassava frogskin disease (CFSD) is a graft-transmissible disease of cassava reported for the first time in the 1970s, in Colombia. The disease is characterized by the formation of longitudinal lip-like fissures on the peel of the cassava storage roots and a progressive reduction in fresh weight and starch content. Since its first report, different pathogens have been identified in CFSD-affected plants and improved sequencing technologies have unraveled complex mixed infections building up in plants with severe root symptoms. The re-emergence of the disease in Colombia during 2019–2020 is again threatening the food security of low-income farmers and the growing local cassava starch industry. Here, we review some results obtained over several years of CFSD pathology research at CIAT, and provide insights on the biology of the disease coming from works on symptoms’ characterization, associated pathogens, means of transmission, carbohydrate accumulation, and management. We expect this work will contribute to a better understanding of the disease, which will reflect on lowering its impact in the Americas and minimize the risk of its spread elsewhere.
Collapse
|
3
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Mushtaq M, Dar AA, Basu U, Bhat BA, Mir RA, Vats S, Dar MS, Tyagi A, Ali S, Bansal M, Rai GK, Wani SH. Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Front Genet 2021; 12:735489. [PMID: 34759957 PMCID: PMC8572880 DOI: 10.3389/fgene.2021.735489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Sanskriti Vats
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - M. S. Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Monika Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
5
|
Velarde AO, Waisen P, Kong AT, Wang KH, Hu JS, Melzer MJ. Characterization of taro reovirus and its status in taro (Colocasia esculenta) germplasm from the Pacific. Arch Virol 2021; 166:2563-2567. [PMID: 34117534 DOI: 10.1007/s00705-021-05108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Taro reovirus (TaRV) has been reported infecting taro (Colocasia esculenta) in the South Pacific, but information on the virus is limited. Here, we report the genome sequence of a reovirus infecting taro in Papua New Guinea that had 10 genomic segments ranging from 1.1 to 3.9 kilobase pairs (kbp) in length with a total genome length of 26.3 kbp. TaRV was most closely related to rice ragged stunt virus (RRSV) but did not cross-react with RRSV polyclonal antisera. TaRV was not detected in 82 germplasm accessions of taro in Hawaii, or samples collected in American Samoa, Fiji, Guam, Palau, or Vanuatu.
Collapse
Affiliation(s)
- Alejandro Olmedo Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Philip Waisen
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Alexandra T Kong
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Koon-Hui Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - John S Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
6
|
Samarfard S, McTaggart AR, Sharman M, Bejerman NE, Dietzgen RG. Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens 2020; 9:pathogens9030214. [PMID: 32183134 PMCID: PMC7157637 DOI: 10.3390/pathogens9030214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa.
Collapse
Affiliation(s)
- Samira Samarfard
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Alistair R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Nicolás E. Bejerman
- Instituto de Patología Vegetal–Centro de Investigaciones Agropecuarias–Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba 5020, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola, Córdoba 5020, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
- Correspondence: ; Tel.: +61-7-334-66503
| |
Collapse
|
7
|
Bragard C, Dehnen‐Schmutz K, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Ferilli F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses of Rubus L. EFSA J 2020; 18:e05928. [PMID: 32626483 PMCID: PMC7008910 DOI: 10.2903/j.efsa.2020.5928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Panel on Plant Health of EFSA conducted a pest categorisation of 17 viruses of Rubus L. that were previously classified as either non-EU or of undetermined standing in a previous opinion. These infectious agents belong to different genera and are heterogeneous in their biology. Blackberry virus X, blackberry virus Z and wineberry latent virus were not categorised because of lack of information while grapevine red blotch virus was excluded because it does not infect Rubus. All 17 viruses are efficiently transmitted by vegetative propagation, with plants for planting representing the major pathway for entry and spread. For some viruses, additional pathway(s) are Rubus seeds, pollen and/or vector(s). Most of the viruses categorised here infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Cherry rasp leaf virus, raspberry latent virus, raspberry leaf curl virus, strawberry necrotic shock virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria to qualify as potential Union quarantine pests (QPs). With the exception of impact in the EU territory, on which the Panel was unable to conclude, blackberry chlorotic ringspot virus, blackberry leaf mottle-associated virus, blackberry vein banding-associated virus, blackberry virus E, blackberry virus F, blackberry virus S, blackberry virus Y and blackberry yellow vein-associated virus satisfy all the other criteria to be considered as potential QPs. Black raspberry cryptic virus, blackberry calico virus and Rubus canadensis virus 1 do not meet the criterion of having a potential negative impact in the EU. For several viruses, the categorisation is associated with high uncertainties, mainly because of the absence of data on biology, distribution and impact. Since the opinion addresses non-EU viruses, they do not meet the criteria to qualify as potential Union regulated non-quarantine pests.
Collapse
|
8
|
Nouri S, Salem N, Nigg JC, Falk BW. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics. J Virol 2015; 90:2434-45. [PMID: 26676774 PMCID: PMC4810699 DOI: 10.1128/jvi.02793-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. IMPORTANCE Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri.
Collapse
Affiliation(s)
- Shahideh Nouri
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Nidá Salem
- Department of Plant Protection, The University of Jordan, Amman, Jordan
| | - Jared C Nigg
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
9
|
MacFarlane S, McGavin W, Tzanetakis I. Virus testing by PCR and RT-PCR amplification in berry fruit. Methods Mol Biol 2015; 1302:227-248. [PMID: 25981258 DOI: 10.1007/978-1-4939-2620-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Berry fruit crops are prone to infection by a wide range of viruses, with the list expanding every year, primarily because of the expansion of the crops to new geographic regions. Although some methods allow for virus detection in a nonspecific manner, the advent of cheap and effective nucleic acid sequencing technologies has allowed for the development of species-specific tests. This chapter describes methods for extraction of nucleic acids for molecular testing from a range of different berry fruit crops and lists oligonucleotide primers that have been developed for amplification of a large number of berry fruit viruses.
Collapse
Affiliation(s)
- Stuart MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK,
| | | | | |
Collapse
|
10
|
Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:425-44. [PMID: 26047558 DOI: 10.1146/annurev-phyto-080614-120030] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A fast, accurate, and full indexing of viruses and viroids in a sample for the inspection and quarantine services and disease management is desirable but was unrealistic until recently. This article reviews the rapid and exciting recent progress in the use of next-generation sequencing (NGS) technologies for the identification of viruses and viroids in plants. A total of four viroids/viroid-like RNAs and 49 new plant RNA and DNA viruses from 18 known or unassigned virus families have been identified from plants since 2009. A comparison of enrichment strategies reveals that full indexing of RNA and DNA viruses as well as viroids in a plant sample at single-nucleotide resolution is made possible by one NGS run of total small RNAs, followed by data mining with homology-dependent and homology-independent computational algorithms. Major challenges in the application of NGS technologies to pathogen discovery are discussed.
Collapse
Affiliation(s)
- Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 China;
| | | | | | | |
Collapse
|
11
|
Ho T, Tzanetakis IE. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 2014; 471-473:54-60. [PMID: 25461531 DOI: 10.1016/j.virol.2014.09.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022]
Abstract
Next generation sequencing (NGS) has revolutionized virus discovery. Notwithstanding, a vertical pipeline, from sample preparation to data analysis, has not been available to the plant virology community. We developed a degenerate oligonucleotide primed RT-PCR method with multiple barcodes for NGS, and constructed VirFind, a bioinformatics tool specifically for virus detection and discovery able to: (i) map and filter out host reads, (ii) deliver files of virus reads with taxonomic information and corresponding Blastn and Blastx reports, and (iii) perform conserved domain search for reads of unknown origin. The pipeline was used to process more than 30 samples resulting in the detection of all viruses known to infect the processed samples, the extension of the genomic sequences of others, and the discovery of several novel viruses. VirFind was tested by four external users with datasets from plants or insects, demonstrating its potential as a universal virus detection and discovery tool.
Collapse
Affiliation(s)
- Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA.
| |
Collapse
|
12
|
Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res 2014; 188:90-6. [PMID: 24717426 DOI: 10.1016/j.virusres.2014.03.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
The ability to provide a fast, inexpensive and reliable diagnostic for any given viral infection is a key parameter in efforts to fight and control these ubiquitous pathogens. The recent developments of high-throughput sequencing (also called Next Generation Sequencing - NGS) technologies and bioinformatics have drastically changed the research on viral pathogens. It is now raising a growing interest for virus diagnostics. This review provides a snapshot vision on the current use and impact of high throughput sequencing approaches in plant virus characterization. More specifically, this review highlights the potential of these new technologies and their interplay with current protocols in the future of molecular diagnostic of plant viruses. The current limitations that will need to be addressed for a wider adoption of high-throughput sequencing in plant virus diagnostics are thoroughly discussed.
Collapse
Affiliation(s)
- Sebastien Massart
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium.
| | - Antonio Olmos
- Centro de Protección Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - Haissam Jijakli
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium
| | - Thierry Candresse
- UMR 1332 de Biologie du fruit et Pathologie, INRA, CS20032, 33882 Villenave d'Ornon cedex, France; UMR 1332 de Biologie du fruit et Pathologie, Université de Bordeaux, CS20032, 33882 Villenave d'Ornon cedex, France
| |
Collapse
|
13
|
Lightle DM, Quito-Avila D, Martin RR, Lee JC. Seasonal phenology of Amphorophora agathonica (Hemiptera: Aphididae) and spread of viruses in red raspberry in Washington. ENVIRONMENTAL ENTOMOLOGY 2014; 43:467-473. [PMID: 24763099 DOI: 10.1603/en13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amphorophora agathonica (Hottes) is the primary vector of aphid-transmitted viruses in red raspberry in the Pacific Northwest region of the United States. To better understand the biology of the aphid, we estimated the lower developmental threshold and studied the seasonal activity of A. agathonica in commercial fields in northern Washington state. In addition, we monitored the spread of raspberry viruses (raspberry latent virus and raspberry leaf mottle virus, RLMV) to determine how rapidly fields became infected and whether there was a relationship between aphid presence and infection. The lower developmental threshold of A. agathonica was estimated to be 2.7°C. In the field, apterous and alate aphid populations began rapidly increasing at ≍800 growing degree-days and peaked at 1,050 growing degree-days. RLMV spread rapidly, with 30-60% of plants in four different commercial fields testing positive after three growing seasons. There was no discernible relationship between the presence or abundance of aphids based on 10 leaves sampled per plant location, and the odds of that plant becoming infected with RLMV.
Collapse
Affiliation(s)
- D M Lightle
- Entomology Program, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
14
|
Hermanns K, Zirkel F, Kurth A, Drosten C, Junglen S. Cimodo virus belongs to a novel lineage of reoviruses isolated from African mosquitoes. J Gen Virol 2014; 95:905-909. [DOI: 10.1099/vir.0.062349-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel reovirus, designated Cimodo virus (CMDV), was isolated from mosquitoes collected in a rainforest region in Côte d’Ivoire. The entire genome comprised 24 835 bp divided into 12 segments ranging from 585 to 4080 bp. The icosahedral non-enveloped virions were 80 nm in diameter. Eight major viral proteins of about 150, 135, 120, 80, 66, 59, 42 and 30 kDa were identified and seven proteins were mapped to the corresponding genome segments by liquid chromatography mass spectrometry. Predicted protein genes diverged by >77 % encoded amino acids from their closest reovirus relatives. The deep phylogenetic branching suggests that CMDV defines an as-yet-unidentified genus within the subfamily Spinareovirinae.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
15
|
Quito-Avila DF, Lightle D, Martin RR. Effect of Raspberry bushy dwarf virus, Raspberry leaf mottle virus, and Raspberry latent virus on Plant Growth and Fruit Crumbliness in 'Meeker' Red Raspberry. PLANT DISEASE 2014; 98:176-183. [PMID: 30708766 DOI: 10.1094/pdis-05-13-0562-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Raspberry crumbly fruit in red raspberry (Rubus idaeus), widespread in the Pacific Northwest of the United States and British Columbia, Canada, is most commonly caused by a virus infection. Raspberry bushy dwarf virus (RBDV) has long been attributed as the causal agent of the disease. Recently, the identification of two additional viruses, Raspberry leaf mottle virus (RLMV) and Raspberry latent virus (RpLV), in northern Washington and British Columbia, suggested the existence of a possible new virus complex responsible for the increased severity of the disease. Virus testing of crumbly fruited plants from five fields in northern Washington revealed the presence of RLMV and RpLV, in addition to RBDV. Plants with less severe crumbly fruit symptoms had a much lower incidence of RLMV or RpLV. Field trials using replicated plots of 'Meeker' plants containing single and mixed infections of RBDV, RLMV, or RpLV, along with a virus-free control, were developed to determine the role of RLMV and RpLV in crumbly fruit. Field evaluations during establishment and two fruiting years revealed that plants infected with the three viruses or the combinations RBDV+RLMV and RBDV+RpLV had the greatest reduction in cane growth, or fruit firmness and fruit weight, respectively. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that the titer of RBDV was increased ~400-fold when it occurred in mixed infections with RLMV compared to RBDV in single infections. In addition, a virus survey revealed that RLMV and RpLV are present at high incidence in northern Washington; whereas the incidence in southern Washington and Oregon, where crumbly fruit is not as serious a problem, was considerably lower.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador, Escuela Superior Politecnica del Litoral, CIBE-ESPOL, Plant Pathology-Virology, Guayaquil, Ecuador
| | - Danielle Lightle
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Robert R Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| |
Collapse
|
16
|
Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014; 6:106-36. [PMID: 24399207 PMCID: PMC3917434 DOI: 10.3390/v6010106] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/27/2022] Open
Abstract
Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology.
Collapse
Affiliation(s)
- Marina Barba
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| | - Henryk Czosnek
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| | - Ahmed Hadidi
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| |
Collapse
|
17
|
Lightle DM, Dossett M, Backus EA, Lee JC. Location of the mechanism of resistance to Amphorophora agathonica (Hemiptera: Aphididae) in red raspberry. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1465-1470. [PMID: 22928330 DOI: 10.1603/ec11405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aphid Amphorophora agathonica Hottes (Hemiptera: Aphididae) is an important virus vector in red (Rubus idaeus L.) and black (Rubus occidentalis L.) raspberries in North America. Raspberry resistance to A. agathonica in the form of a single dominant gene named Ag1 has been relied upon to help control aphid-transmitted plant viruses; however, the mechanism of resistance to the insect is poorly understood. Aphid feeding was monitored using an electrical penetration graph on the resistant red raspberry 'Tulameen' and compared with a susceptible control, 'Vintage'. There were no differences in pathway feeding behaviors of aphids as they moved toward the phloem. Once in the phloem, however, aphids feeding on resistant plants spent significantly more time salivating than on susceptible plants, and ingested significantly less phloem sap. This suggests that a mechanism for resistance to A. agathonica is located in the phloem. Reduced ingestion of phloem may result in inefficient acquisition of viruses and is a likely explanation for the lack of aphid-transmitted viruses in plantings of resistant cultivars.
Collapse
Affiliation(s)
- D M Lightle
- Oregon State University, 4017 Ag & Life Sciences Bldg., Corvallis, OR 97330, USA.
| | | | | | | |
Collapse
|
18
|
Quito-Avila DF, Lightle D, Lee J, Martin RR. Transmission biology of Raspberry latent virus, the first aphid-borne reovirus. PHYTOPATHOLOGY 2012; 102:547-553. [PMID: 22352304 DOI: 10.1094/phyto-12-11-0331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Raspberry latent virus (RpLV) is a newly characterized reovirus found in commercial raspberry fields in the Pacific Northwest (PNW). Thus far, all members of the plant reoviruses are transmitted in a replicative, persistent manner by several species of leafhoppers or planthoppers. After several failed attempts to transmit RpLV using leafhoppers, the large raspberry aphid, commonly found in the PNW, was tested as a vector of the virus. The virus was transmitted to new, healthy raspberry plants when inoculated with groups of at least 50 viruliferous aphids, suggesting that aphids are vectors of RpLV, albeit inefficient ones. Using absolute and relative quantification methods, it was shown that the virus titer in aphids continued to increase after the acquisition period even when aphids were serially transferred onto fresh, healthy plants on a daily basis. Transmission experiments determined that RpLV has a 6-day latent period in the aphid before it becomes transmissible; however, it was not transmitted transovarially to the next generation. To our knowledge, this is the first report of a plant reovirus transmitted by an aphid. Phylogenetic analyses showed that RpLV is related most closely to but distinct from Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus. Moreover, the conserved nucleotide termini of the genomic segments of RpLV did not match those of RRSV or other plant reoviruses, allowing us to suggest that RpLV is probably the type member of a new genus in the Reoviridae comprising aphid-transmitted reoviruses.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | | | | | | |
Collapse
|
19
|
Spear A, Sisterson MS, Stenger DC. Reovirus genomes from plant-feeding insects represent a newly discovered lineage within the family Reoviridae. Virus Res 2011; 163:503-11. [PMID: 22142476 DOI: 10.1016/j.virusres.2011.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
A complex set of double-stranded RNAs (dsRNAs) was isolated from threecornered alfalfa hopper (Spissistilus festinus), a plant-feeding hemipteran pest. A subset of these dsRNAs constitute the genome of a new reovirus, provisionally designated Spissistilus festinus reovirus (SpFRV). SpFRV was present in threecornered alfalfa hopper populations in the San Joaquin Valley of California, with incidence ranging from 10% to 60% in 24 of 25 sample sets analyzed. The 10 dsRNA segments of SpFRV were completely sequenced and shown to share conserved terminal sequences (5'-AGAGA and CGAUGUUGU-3') of the positive-sense strand that are distinct from known species of the family Reoviridae. Comparisons of the RNA directed RNA polymerase (RdRp) indicated SpFRV is most closely related (39.1% amino acid identity) to another new reovirus infecting the angulate leafhopper (Acinopterus angulatus) and provisionally designated Acinopterus angulatus reovirus (AcARV). The RdRp of both viruses was distantly related to Raspberry latent virus RdRp at 27.0% (SpFRV) and 30.0% (AcARV) or Rice ragged stunt virus RdRp at 26.2% (SpFRV) and 29.0% (AcARV) amino acid identity. RdRp phylogeny confirmed that SpFRV and AcARV are sister taxa sharing a most recent common ancestor. SpFRV segment 6 encodes a protein containing two NTP binding motifs that are conserved in homologs of reoviruses in the subfamily Spinareovirinae. The protein encoded by SpFRV segment 4 was identified as a guanylyltransferase homolog. SpFRV segments 1, 3, and 10 encode homologs of reovirus structural proteins. No homologs were identified for proteins encoded by SpFRV segments 5, 7, 8, and 9. Collectively, the low level of sequence identity with other reoviruses, similar segment terminal sequences, RdRp phylogeny, and host taxa indicate that SpFRV and AcARV may be considered members of a proposed new genus of the family Reoviridae (subfamily Spinareovirinae), with SpFRV assigned as the type species.
Collapse
Affiliation(s)
- Allyn Spear
- United States Department of Agriculture - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Ave., Parlier, CA 93648, USA
| | | | | |
Collapse
|
20
|
Quito-Avila DF, Martin RR. Real-time RT-PCR for detection of Raspberry bushy dwarf virus, Raspberry leaf mottle virus and characterizing synergistic interactions in mixed infections. J Virol Methods 2011; 179:38-44. [PMID: 21968094 DOI: 10.1016/j.jviromet.2011.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/14/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Two TaqMan-based real-time One-Step RT-PCR assays were developed for the rapid and efficient detection of Raspberry bushy dwarf virus (RBDV) and Raspberry leaf mottle virus (RLMV), two of the most common raspberry viruses in North America and Europe. The primers and probes were designed from conserved fragments of the polymerase region of each virus and were effective for the detection of different isolates tested in this study. The RBDV assay amplified a 94bp amplicon and was able to detect as few as 30 viral copies. Whereas the RLMV assay amplified a 180bp amplicon and detected as few as 300 viral copies from plant and aphid RNA extracts. Both assays were significantly more sensitive than their corresponding conventional RT-PCR methods. The sensitivity of the RLMV assay was also tested on single aphids after a fixed acquisition access period (AAP). In addition, the assays revealed a novel synergistic interaction between the two viruses, where the concentration of RBDV was enhanced ∼400-fold when it occurred in combination with RLMV compared to its concentration in single infections. The significance of this finding and the importance of the development of real-time RT-PCR assays for the detection of RBDV and RLMV are discussed.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|