1
|
Marano JM, Weger-Lucarelli J. Preexisting inter-serotype immunity drives antigenic evolution of dengue virus serotype 2. Virology 2024; 590:109951. [PMID: 38096749 PMCID: PMC10855010 DOI: 10.1016/j.virol.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Dengue virus (DENV) infects roughly 400 million people annually, causing febrile and hemorrhagic disease. While preexisting inter-serotype immunity (PISI) provides transient protection, it may drive severe disease over time. PISI's impact on virus evolution, however, is less understood. Retrospective epidemiological analyses suggest that PISI may drive DENV evolution. Using in vitro directed evolution, we explored how DENV2 evolves in the presence of DENV3/4 convalescent serum. Two post-passaging mutations (E-I6M and E-N203D) were then studied for fitness effects in mammalian and insect hosts and immune escape. E-I6M resisted neutralization, altered fitness in mammalian cell culture models, and had no effect in Aedes albopictus mosquitoes. E-N203D showed no change in neutralization sensitivity, reduced fitness in a DENV-naïve epithelial model, and no effects in the other models. These results align with surveillance data, where E-I6M emerged and disappeared, while E-203D and E-203 N cocirculate, thus suggesting that PISI can drive DENV evolution.
Collapse
Affiliation(s)
- Jeffrey M Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
2
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Keeffe JR, Van Rompay KKA, Olsen PC, Wang Q, Gazumyan A, Azzopardi SA, Schaefer-Babajew D, Lee YE, Stuart JB, Singapuri A, Watanabe J, Usachenko J, Ardeshir A, Saeed M, Agudelo M, Eisenreich T, Bournazos S, Oliveira TY, Rice CM, Coffey LL, MacDonald MR, Bjorkman PJ, Nussenzweig MC, Robbiani DF. A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep 2018; 25:1385-1394.e7. [PMID: 30403995 PMCID: PMC6268006 DOI: 10.1016/j.celrep.2018.10.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/15/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.
Collapse
Affiliation(s)
- Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackson B Stuart
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Abstract
West Nile virus (WNV) is an arbovirus with increased global incidence in the last decade. It is also a major cause of human encephalitis in the USA. WNV is an arthropod-transmitted virus that mainly affects birds but humans become infected as incidental dead-end hosts which can cause outbreaks in naïve populations. The main vectors of WNV are mosquitoes of the genus Culex, which preferentially feed on birds. As in many other arboviruses, the characteristics that allow Flaviviruses like WNV to replicate and transmit to different hosts are encrypted in their genome, which also contains information for the production of structural and nonstructural proteins needed for host cell infection. WNV and other Flaviviruses have developed different strategies to establish infection, replication, and successful transmission. Most of these strategies include the diversion of the host's immune responses away from the virus. In this review, we describe the molecular structure and protein function of WNV with emphasis on protein involvement in the modulation of antiviral immune responses.
Collapse
|
6
|
Plante JA, Torres M, Huang CYH, Beasley DWC. Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III. Virology 2016; 496:97-105. [PMID: 27284640 DOI: 10.1016/j.virol.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/23/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that causes febrile illness, encephalitis, and occasionally death in humans. The envelope protein is the main component of the WNV virion surface, and domain III of the envelope protein (EIII) is both a putative receptor binding domain and a target of highly specific, potently neutralizing antibodies. Envelope E-332 (E-332) is known to have naturally occurring variation and to be a key determinant of neutralization for anti-EIII antibodies. A panel of viruses containing all possible amino acid substitutions at E-332 was constructed. E-332 was found to be highly tolerant of mutation, and almost all of these changes had large impacts on antigenicity of EIII but only limited effects on growth or virulence phenotypes.
Collapse
Affiliation(s)
- Jessica A Plante
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Claire Y-H Huang
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - David W C Beasley
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Pavitrakar DV, Ayachit VM, Mundhra S, Bondre VP. Development and characterization of reverse genetics system for the Indian West Nile virus lineage 1 strain 68856. J Virol Methods 2015; 226:31-9. [DOI: 10.1016/j.jviromet.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
|
8
|
Evaluation of Japanese encephalitis virus polytope DNA vaccine candidate in BALB/c mice. Virus Res 2012; 170:118-25. [DOI: 10.1016/j.virusres.2012.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/26/2022]
|
9
|
Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine 2012; 31:461-71. [PMID: 23153447 DOI: 10.1016/j.vaccine.2012.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 12/24/2022]
Abstract
Flavivirus is a genus of the family Flaviviridae. It includes West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and several other viruses which lead to extensive morbidity and mortality in humans. To establish infection and replication in the hosts, flaviviruses have evolved a variety of strategies to modulate the host's immune responses. In this review, the strategies employed by flaviviruses to evade the innate and adaptive immunity of host are summarized based on current studies, with a major focus on the inhibition of interferon, complement, natural killer (NK) cell, B cell, and T cell responses. This review aims to provide an overview of the current understanding for the mechanisms used by flaviviruses to escape the host's immune response, which will facilitate the future studies on flavivirus pathogenesis and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | |
Collapse
|