1
|
Wu JS, Kan JY, Chang YS, Le UNP, Su WC, Lai HC, Lin CW. Developing Zika virus-transduced hACE2 expression models for severe acute respiratory syndrome coronavirus 2 infection in vitro and in vivo. J Virol Methods 2025; 336:115166. [PMID: 40239870 DOI: 10.1016/j.jviromet.2025.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
To address the human ACE2 dependence for SARS-CoV-2 infection, this study presents a novel strategy for generating ZIKV-hACE2 single-round infectious particles (SRIPs) by incorporating the hACE2 gene into a Zika virus (ZIKV) mini-replicon. SARS-CoV-2 SRIP infection was significantly enhanced in HEK293T cells pre-infected with ZIKV-hACE2, as evidenced by increased cytopathic effects and elevated mRNA and protein levels of the SARS-CoV-2 nucleocapsid (N) protein. A mouse model was also developed with this approach to investigate SARS-CoV-2 infection. Immunohistochemical and real-time RT-PCR analyses confirmed the presence of the SARS-CoV-2 N protein in the lungs of mice injected with ZIKV-hACE2 SRIPs, indicating successful infection. The mouse model displayed COVID-19-like pathological changes, including increased macrophages in BALF, severe lung damage, and elevated pro-inflammatory cytokines (IL-6 and IL-1β). These features mimic severe COVID-19 cases in humans. Additionally, treatment with nirmatrelvir resulted in a 6.2-fold reduction in viral load and a marked decrease in N protein levels. Overall, this ZIKV mini-replicon-mediated hACE2 expression model, both in vitro and in vivo, is a valuable tool for studying SARS-CoV-2 infection and evaluating therapeutic interventions. The mouse model's pathological features further underscore its relevance for in vivo research on SARS-CoV-2.
Collapse
Affiliation(s)
- Joh-Sin Wu
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Uyen Nguyen Phuong Le
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Cheng-Wen Lin
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan.
| |
Collapse
|
2
|
Nie MS, Li XH, Zhang S, Zeng DD, Cai YR, Peng DX, Jiang T, Shi JP, Li J. Screening for anti-influenza virus compounds from traditional Mongolian medicine by GFP-based reporter virus. Front Cell Infect Microbiol 2024; 14:1431979. [PMID: 39071166 PMCID: PMC11272615 DOI: 10.3389/fcimb.2024.1431979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.
Collapse
Affiliation(s)
- Mao-Shun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Da-Xin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Jablunovsky A, Narayanan A, Jose J. Identification of a critical role for ZIKV capsid α3 in virus assembly and its genetic interaction with M protein. PLoS Negl Trop Dis 2024; 18:e0011873. [PMID: 38166143 PMCID: PMC10786401 DOI: 10.1371/journal.pntd.0011873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Flaviviruses such as Zika and dengue viruses are persistent health concerns in endemic regions worldwide. Efforts to combat the spread of flaviviruses have been challenging, as no antivirals or optimal vaccines are available. Prevention and treatment of flavivirus-induced diseases require a comprehensive understanding of their life cycle. However, several aspects of flavivirus biogenesis, including genome packaging and virion assembly, are not well characterized. In this study, we focused on flavivirus capsid protein (C) using Zika virus (ZIKV) as a model to investigate the role of the externally oriented α3 helix (C α3) without a known or predicted function. Alanine scanning mutagenesis of surface-exposed amino acids on C α3 revealed a critical CN67 residue essential for ZIKV virion production. The CN67A mutation did not affect dimerization or RNA binding of purified C protein in vitro. The virus assembly is severely affected in cells transfected with an infectious cDNA clone of ZIKV with CN67A mutation, resulting in a highly attenuated phenotype. We isolated a revertant virus with a partially restored phenotype by continuous passage of the CN67A mutant virus in Vero E6 cells. Sequence analysis of the revertant revealed a second site mutation in the viral membrane (M) protein MF37L, indicating a genetic interaction between the C and M proteins of ZIKV. Introducing the MF37L mutation on the mutant ZIKV CN67A generated a double-mutant virus phenotypically consistent with the isolated genetic revertant. Similar results were obtained with analogous mutations on C and M proteins of dengue virus, suggesting the critical nature of C α3 and possible C and M residues contributing to virus assembly in other Aedes-transmitted flaviviruses. This study provides the first experimental evidence of a genetic interaction between the C protein and the viral envelope protein M, providing a mechanistic understanding of the molecular interactions involved in the assembly and budding of Aedes-transmitted flaviviruses.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Wu JS, Kan JY, Lai HC, Lin CW. Development of Zika Virus Mini-Replicon Based Single-Round Infectious Particles as Gene Delivery Vehicles. Viruses 2023; 15:1762. [PMID: 37632104 PMCID: PMC10459639 DOI: 10.3390/v15081762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) is a type of RNA virus that belongs to the Flaviviridae family. We have reported the construction of a DNA-launched replicon of the Asian-lineage Natal RGN strain and the production of single-round infectious particles (SRIPs) via the combination of prM/E virus-like particles with the replicon. The main objective of the study was to engineer the ZIKV replicon as mammalian expression vectors and evaluate the potential of ZIKV mini-replicon-based SRIPs as delivery vehicles for heterologous gene expression in vitro and in vivo. The mini-replicons contained various genetic elements, including NS4B, an NS5 methyltransferase (MTase) domain, and an NS5 RNA-dependent RNA polymerase (RdRp) domain. Among these mini-replicons, only ZIKV mini-replicons 2 and 3, which contained the full NS5 and NS4B-NS5 genetic elements, respectively, exhibited the expression of reporters (green fluorescent protein (GFP) and cyan fluorescent protein-yellow fluorescent fusion protein (CYP)) and generated self-replicating RNAs. When the mini-replicons were transfected into the cells expressing ZIKV prM/E, this led to the production of ZIKV mini-replicon-based SRIPs. ZIKV mini-replicon 3 SRIPs showed a significantly higher yield titer and a greater abundance of self-replicating replicon RNAs when compared to ZIKV mini-replicon 2 SRIPs. Additionally, there were disparities in the dynamics of CYP expression and cytotoxic effects observed in various infected cell types between ZIKV mini-replicon 2-CYP and 3-CYP SRIPs. In particular, ZIKV mini-replicon 3-CYP SRIPs led to a substantial decrease in the survival rates of infected cells at a MOI of 2. An in vivo gene expression assay indicated that hACE2 expression was detected in the lung and brain tissues of mice following the intravenous administration of ZIKV mini-replicon 3-hACE2 SRIPs. Overall, this study highlights the potential of ZIKV mini-replicon-based SRIPs as promising vehicles for gene delivery applications in vitro and in vivo.
Collapse
Affiliation(s)
- Joh-Sin Wu
- The PhD Program for Health Science and Industry, China Medical University, Taichung 404333, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Cheng-Wen Lin
- The PhD Program for Health Science and Industry, China Medical University, Taichung 404333, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan
- Drug Development Center, China Medical University, Taichung 404333, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan
| |
Collapse
|
5
|
Abstract
Dengue replicons are powerful tools used in studying virus biology as well as in high-throughput screening of drug candidates. Replicon constructs are developed as genomic (consists of all the viral protein genes) or sub-genomic (consists of only nonstructural protein genes) and are used to study various aspects of the virus life cycle such as genome replication and virus assembly. In addition, a replicon usually includes a reporter gene used in monitoring virus replication. In this chapter, we provide methods to develop both genomic and sub-genomic dengue replicons with a luciferase reporter and describe different assays to utilize these systems.
Collapse
Affiliation(s)
- Thu M Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Autonomously Replicating RNAs of Bungowannah Pestivirus: E RNS Is Not Essential for the Generation of Infectious Particles. J Virol 2020; 94:JVI.00436-20. [PMID: 32404522 DOI: 10.1128/jvi.00436-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.
Collapse
|
7
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
8
|
The Rescue and Characterization of Recombinant, Microcephaly-Associated Zika Viruses as Single-Round Infectious Particles. Viruses 2019; 11:v11111005. [PMID: 31683628 PMCID: PMC6893733 DOI: 10.3390/v11111005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/17/2023] Open
Abstract
Zika virus (ZIKV) is transmitted by Aedes mosquitoes and exhibits genetic variation with African and Asian lineages. ZIKV Natal RGN strain, an Asian-lineage virus, has been identified in brain tissues from fetal autopsy cases with microcephaly and is suggested to be a neurotropic variant. However, ZIKV Natal RGN strain has not been isolated; its biological features are not yet illustrated. This study rescued and characterized recombinant, single-round infectious particles (SRIPs) of the ZIKV Natal RGN strain using reverse genetic and synthetic biology techniques. The DNA-launched replicon of ZIKV Natal RGN was constructed and contains the EGFP reporter, lacks prM-E genes, and replicates under CMV promoter control. The peak in the ZIKV Natal RGN SRIP titer reached 6.25 × 106 TCID50/mL in the supernatant of prM-E-expressing packaging cells 72 h post-transfection with a ZIKV Natal RGN replicon. The infectivity of ZIKV Natal RGN SRIPs has been demonstrated to correlate with the green florescence intensity of the EGFP reporter, the SRIP-induced cytopathic effect, and ZIKV’s non-structural protein expression. Moreover, ZIKV Natal RGN SRIPs effectively self-replicated in rhabdomyosarcoma/muscle, glioblastoma/astrocytoma, and retinal pigmented epithelial cells, displaying unique cell susceptibility with differential attachment activity. Therefore, the recombinant ZIKV Natal RGN strain was rescued as SRIPs that could be used to elucidate the biological features of a neurotropic strain regarding cell tropism and pathogenic components, apply for antiviral agent screening, and develop vaccine candidates.
Collapse
|
9
|
Usme-Ciro JA, Lopera JA, Alvarez DA, Enjuanes L, Almazán F. Generation of a DNA-Launched Reporter Replicon Based on Dengue Virus Type 2 as a Multipurpose Platform. Intervirology 2017. [DOI: 10.1159/000476066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Lu CY, Hour MJ, Wang CY, Huang SH, Mu WX, Chang YC, Lin CW. Single-Round Infectious Particle Antiviral Screening Assays for the Japanese Encephalitis Virus. Viruses 2017; 9:v9040076. [PMID: 28394283 PMCID: PMC5408682 DOI: 10.3390/v9040076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a mosquito-borne flavivirus with a positive-sense single-stranded RNA genome that contains a big open reading frame (ORF) flanked by 5′- and 3′- untranslated regions (UTRs). Nearly 30,000 JE cases with 10,000 deaths are still annually reported in East Asia. Although the JEV genotype III vaccine has been licensed, it elicits a lower protection against other genotypes. Moreover, no effective treatment for a JE case is developed. This study constructed a pBR322-based and cytomegaloviruses (CMV) promoter-driven JEV replicon for the production of JEV single-round infectious particles (SRIPs) in a packaging cell line expressing viral structural proteins. Genetic instability of JEV genome cDNA in the pBR322 plasmid was associated with the prokaryotic promoter at 5′ end of the JEV genome that triggers the expression of the structural proteins in E. coli. JEV structural proteins were toxic E. coli, thus the encoding region for structural proteins was replaced by a reporter gene (enhanced green fluorescent protein, EGFP) that was in-frame fused with the first eight amino acids of the C protein at N-terminus and the foot-and-mouth disease virus (FMDV) 2A peptide at C-terminus in a pBR322-based JEV-EGFP replicon. JEV-EGFP SRIPs generated from JEV-EGFP replicon-transfected packaging cells displayed the infectivity with cytopathic effect induction, self-replication of viral genomes, and the expression of EGFP and viral proteins. Moreover, the combination of JEV-EGFP SRIP plus flow cytometry was used to determine the half maximal inhibitory concentration (IC50) values of antiviral agents according to fluorescent intensity and positivity of SRIP-infected packaging cells post treatment. MJ-47, a quinazolinone derivative, significantly inhibited JEV-induced cytopathic effect, reducing the replication and expression of JEV-EGFP replicon in vitro. The IC50 value of 6.28 µM for MJ-47 against JEV was determined by the assay of JEV-EGFP SRIP infection in packaging cells plus flow cytometry that was more sensitive, effective, and efficient compared to the traditional plaque assay. Therefore, the system of JEV-EGFP SRIPs plus flow cytometry was a rapid and reliable platform for screening antiviral agents and evaluating antiviral potency.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Wen-Xiang Mu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Chun Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
11
|
Cook BWM, Nikiforuk AM, Cutts TA, Kobasa D, Court DA, Theriault SS. Development of a subgenomic clone system for Kyasanur Forest disease virus. Ticks Tick Borne Dis 2016; 7:1047-1051. [PMID: 27357207 DOI: 10.1016/j.ttbdis.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Emerging tropical viruses pose an increasing threat to public health because social, economic and environmental factors such as global trade and deforestation allow for their migration into previously unexposed populations and ecological niches. Among such viruses, Kyasanur Forest disease virus (KFDV) deserves particular recognition because it causes hemorrhagic fever. This work describes the completion of an antiviral testing platform (subgenomic system) for KFDV that could be used to quickly and safely screen compounds capable of inhibiting KFDV replication without the requirement for high containment, as the structural genes have been replaced with a luciferase reporter gene precluding the generation of infectious particles. The coordination of KFDV kinetics with the replication characteristics of the subgenomic system has provided additional insight into the timing of flavivirus replication events, as the genetically engineered KFDV genome began replication as early as 2h post cellular entry. Possession of such antiviral testing platforms by public health agencies should accelerate the testing of antiviral drugs against emerging or recently emerged viruses mitigating the effects of their disease and transmission.
Collapse
Affiliation(s)
- Bradley W M Cook
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3P6, Canada; Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 745 Logan Street, Winnipeg, MB R3E 3L5, Canada; Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Aidan M Nikiforuk
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3P6, Canada; Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 745 Logan Street, Winnipeg, MB R3E 3L5, Canada; Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Todd A Cutts
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3P6, Canada; Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 745 Logan Street, Winnipeg, MB R3E 3L5, Canada
| | - Darwyn Kobasa
- High Containment Respiratory Viruses Group, Special Pathogens Program, National Microbiology Laboratory at the Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3P6, Canada,; Department of Medical Microbiology, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Deborah A Court
- Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Steven S Theriault
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3P6, Canada; Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health and J. C. Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, 745 Logan Street, Winnipeg, MB R3E 3L5, Canada; Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
12
|
Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. Viruses 2016; 8:v8050122. [PMID: 27164125 PMCID: PMC4885077 DOI: 10.3390/v8050122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro.
Collapse
|
13
|
Xia P, Wang Y, Zhu C, Zou Y, Yang Y, Liu W, Hardwidge PR, Zhu G. Porcine aminopeptidase N binds to F4+ enterotoxigenic Escherichia coli fimbriae. Vet Res 2016; 47:24. [PMID: 26857562 PMCID: PMC4746772 DOI: 10.1186/s13567-016-0313-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/25/2016] [Indexed: 11/26/2022] Open
Abstract
F4+ enterotoxigenic Escherichia coli (ETEC) strains cause diarrheal disease in neonatal and post-weaned piglets. Several different host receptors for F4 fimbriae have been described, with porcine aminopeptidase N (APN) reported most recently. The FaeG subunit is essential for the binding of the three F4 variants to host cells. Here we show in both yeast two-hybrid and pulldown assays that APN binds directly to FaeG, the major subunit of F4 fimbriae, from three serotypes of F4+ ETEC. Modulating APN gene expression in IPEC-J2 cells affected ETEC adherence. Antibodies raised against APN or F4 fimbriae both reduced ETEC adherence. Thus, APN mediates the attachment of F4+E. coli to intestinal epithelial cells.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yiting Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Congrui Zhu
- College of Animal Medicine, Nanjing Agriculture University, Nanjing, 210095, China.
| | - Yajie Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ying Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Appl Biochem Biotechnol 2016; 178:1567-85. [PMID: 26728654 PMCID: PMC7091396 DOI: 10.1007/s12010-015-1968-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades.
Collapse
|
15
|
Poyomtip T, Hodge K, Matangkasombut P, Sakuntabhai A, Pisitkun T, Jirawatnotai S, Chimnaronk S. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication. J Gen Virol 2015; 97:646-658. [PMID: 26669909 DOI: 10.1099/jgv.0.000371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.
Collapse
Affiliation(s)
- Teera Poyomtip
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kenneth Hodge
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anavaj Sakuntabhai
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Functional Genetics of Infectious Diseases Unit, Institute Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), URA3012, F-75015 Paris, France
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sarin Chimnaronk
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
16
|
Medin CL, Valois S, Patkar CG, Rothman AL. A plasmid-based reporter system for live cell imaging of dengue virus infected cells. J Virol Methods 2014; 211:55-62. [PMID: 25445884 DOI: 10.1016/j.jviromet.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Cell culture models are used widely to study the effects of dengue virus (DENV) on host cell function. Current methods of identification of cells infected with an unmodified DENV requires fixation and permeablization of cells to allow DENV-specific antibody staining. This method does not permit imaging of viable cells over time. In this report, a plasmid-based reporter was developed to allow non-destructive identification of DENV-infected cells. The plasmid-based reporter was demonstrated to be broadly applicable to the four DENV serotypes, including low-passaged strains, and was specifically cleaved by the viral protease with minimal interference on viral production. This study reveals the potential for this novel reporter system to advance the studies of virus-host interactions during DENV infection.
Collapse
Affiliation(s)
- Carey L Medin
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States.
| | - Sierra Valois
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States
| | - Chinmay G Patkar
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| |
Collapse
|
17
|
Usme-Ciro JA, Lopera JA, Enjuanes L, Almazán F, Gallego-Gomez JC. Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Res 2013; 180:12-22. [PMID: 24342140 PMCID: PMC7114509 DOI: 10.1016/j.virusres.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/05/2022]
Abstract
We cloned a DENV-2 infectious cDNA into a BAC under the control of the CMV promoter. We assessed the production of infectious particles. We rescued infectious viruses after serial passages in C6/36 cells. Parental and recombinant viruses were similar in plaque and syncytia phenotypes.
Major progress in Dengue virus (DENV) biology has resulted from the use of infectious clones obtained through reverse genetics. The construction of these clones is commonly based on high- or low-copy number plasmids, yeast artificial chromosomes, yeast-Escherichia coli shuttle vectors, and bacterial artificial chromosomes (BACs). Prokaryotic promoters have consistently been used for the transcription of these clones. The goal of this study was to develop a novel DENV infectious clone in a BAC under the control of the cytomegalovirus immediate-early promoter and to generate a virus with the fusion envelope-green fluorescent protein in an attempt to track virus infection. The transfection of Vero cells with a plasmid encoding the DENV infectious clone facilitated the recovery of infectious particles that increased in titer after serial passages in C6/36 cells. The plaque size and syncytia phenotypes of the recombinant virus were similar to those of the parental virus. Despite the observation of autonomous replication and the detection of low levels of viral genome after two passages, the insertion of green fluorescent protein and Renilla luciferase reporter genes negatively impacted virus rescue. To the best of our knowledge, this is the first study using a DENV infectious clone under the control of the cytomegalovirus promoter to facilitate the recovery of recombinant viruses without the need for in vitro transcription. This novel molecular clone will be useful for establishing the molecular basis of replication, assembly, and pathogenesis, evaluating potential antiviral drugs, and the development of vaccine candidates for attenuated recombinant viruses.
Collapse
Affiliation(s)
- Jose A Usme-Ciro
- Molecular and Translational Medicine Group, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jaime A Lopera
- Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - Juan C Gallego-Gomez
- Molecular and Translational Medicine Group, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
18
|
A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Vet Res 2013; 44:104. [PMID: 24176053 PMCID: PMC4176086 DOI: 10.1186/1297-9716-44-104] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Here we report the rescue of a recombinant porcine reproductive and respiratory syndrome virus (PRRSV) carrying an enhanced green fluorescent protein (EGFP) reporter gene as a separate transcription unit. A copy of the transcription regulatory sequence for ORF6 (TRS6) was inserted between the N protein and 3′-UTR to drive the transcription of the EGFP gene and yield a general purpose expression vector. Successful recovery of PRRSV was obtained using an RNA polymerase II promoter to drive transcription of the full-length virus genome, which was assembled in a bacterial artificial chromosome (BAC). The recombinant virus showed growth replication characteristics similar to those of the wild-type virus in the infected cells. In addition, the recombinant virus stably expressed EGFP for at least 10 passages. EGFP expression was detected at approximately 10 h post infection by live-cell imaging to follow the virus spread in real time and the infection of neighbouring cells occurred predominantly through cell-to-cell-contact. Finally, the recombinant virus generated was found to be an excellent tool for neutralising antibodies and antiviral compound screening. The newly established reverse genetics system for PRRSV could be a useful tool not only to monitor virus spread and screen for neutralising antibodies and antiviral compounds, but also for fundamental research on the biology of the virus.
Collapse
|
19
|
Yang CC, Tsai MH, Hu HS, Pu SY, Wu RH, Wu SH, Lin HM, Song JS, Chao YS, Yueh A. Characterization of an efficient dengue virus replicon for development of assays of discovery of small molecules against dengue virus. Antiviral Res 2013; 98:228-41. [PMID: 23499649 DOI: 10.1016/j.antiviral.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 01/04/2023]
Abstract
Dengue virus (DENV) is a public health threat to approximately 40% of the global population. At present, neither licensed vaccines nor effective therapies exist, and the mechanism of viral RNA replication is not well understood. Here, we report the development of efficient Renilla luciferase reporter-based DENV replicons that contain the full-length capsid sequence for transient and stable DENV RNA replication. A comparison of the transient and stable expression of this RNA-launched replicon to replicons containing various deletions revealed dengue replicon containing entire mature capsid RNA element has higher replicon activity. An efficient DNA-launched DENV replicon, pCMV-DV2Rep, containing a full-length capsid sequence, was created and successfully applied to evaluate the potency of known DENV inhibitors. Stable cell lines harboring the DENV replicon were easily established by transfecting pCMV-DV2Rep into BHK21 cells. Steady and high replicon reporter signals were observed in the stable DENV replicon cells, even after 30 passages. The stable DENV replicon cells were successfully used to determine the potency of known DENV inhibitors. A high-throughput screening assay based on stable DENV replicon cells was evaluated and shown to have an excellent Z' factor of 0.74. Altogether, the development of our efficient DENV replicon system will facilitate the study of virus replication and the discovery of antiviral compounds.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Review of diagnostic plaque reduction neutralization tests for flavivirus infection. Vet J 2013; 195:33-40. [DOI: 10.1016/j.tvjl.2012.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/20/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022]
|