1
|
Musa E, Nia ZM, Bragazzi NL, Leung D, Lee N, Kong JD. Avian Influenza: Lessons from Past Outbreaks and an Inventory of Data Sources, Mathematical and AI Models, and Early Warning Systems for Forecasting and Hotspot Detection to Tackle Ongoing Outbreaks. Healthcare (Basel) 2024; 12:1959. [PMID: 39408139 PMCID: PMC11476403 DOI: 10.3390/healthcare12191959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES The ongoing avian influenza (H5N1) outbreak, one of the most widespread and persistent in recent history, has significantly impacted public health and the poultry and dairy cattle industries. This review covers lessons from past outbreaks, risk factors for transmission, molecular epidemiology, clinical features, surveillance strategies, and socioeconomic impacts. Since 1997, H5N1 has infected over 900 individuals globally, with a fatality rate exceeding 50%. Key factors influencing infection rates include demographic, socioeconomic, environmental, and ecological variables. The virus's potential for sustained human-to-human transmission remains a concern. The current outbreak, marked by new viral clades, has complicated containment efforts. METHODS This review discusses how to integrate technological advances, such as mathematical modeling and artificial intelligence (AI), to improve forecasting, hotspot detection, and early warning systems. RESULTS We provide inventories of data sources, covering both conventional and unconventional data streams, as well as those of mathematical and AI models, which can be vital for comprehensive surveillance and outbreak responses. CONCLUSION In conclusion, integrating AI, mathematical models, and technological innovations into a One-Health approach is essential for improving surveillance, forecasting, and response strategies to mitigate the impacts of the ongoing avian influenza outbreak. Strengthening international collaboration and biosecurity measures will be pivotal in controlling future outbreaks and protecting both human and animal populations from this evolving global threat.
Collapse
Affiliation(s)
- Emmanuel Musa
- Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Toronto, ON M3J 1P3, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON M3J 1P3, Canada
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Toronto, ON M3J 1P3, Canada
| | - Zahra Movahhedi Nia
- Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Toronto, ON M3J 1P3, Canada
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Toronto, ON M3J 1P3, Canada
- Department of Mathematics, York University, Toronto, ON M3J 1P3, Canada
| | | | - Doris Leung
- Canada Animal Health Surveillance System (CAHSS), Animal Health Canada, Elora, ON N0B 1S0, Canada
| | - Nelson Lee
- Institute for Pandemics, Dalla Lana School of Public Health (DLSPH), University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Jude Dzevela Kong
- Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Toronto, ON M3J 1P3, Canada
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Toronto, ON M3J 1P3, Canada
- Institute for Pandemics, Dalla Lana School of Public Health (DLSPH), University of Toronto, Toronto, ON M5S 1A1, Canada;
- Artificial Intelligence and Mathematical Modeling Lab (AIMMlab), DLSPH, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
3
|
Vijayakumar P, Raut AA, Chingtham S, Murugkar HV, Kulkarni DD, Sood R, Singh VP, Mishra A. Proteomic analysis of differential expression of lung proteins in response to highly pathogenic avian influenza virus infection in chickens. Arch Virol 2021; 167:141-152. [PMID: 34786609 DOI: 10.1007/s00705-021-05287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Elucidation of the molecular pathogenesis underlying virus-host interactions is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) virus infection in chickens. However, the pathogenesis of HPAI virus in chickens is not completely understood. To identify the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we analyzed the lung proteome of a chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). Mass spectrometry data sets were searched against the chicken UniProt reference database. At the local false discovery rate level of 5%, a total of 3313 proteins with the presence of at least one unique peptide were identified in the chicken lung proteome datasets. Differential expression analysis of these proteins showed that 247 and 1754 proteins were downregulated at 12 h and 48 h postinfection, respectively. We observed expression of proteins of the predominant signaling pathways, including Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and JAK-STAT signaling. Activation of these pathways is associated with the cytokine storm effect and thus may be the cause of the severity of HPAI H5N1 infection in chickens. We also observed the expression of myeloid differentiation primary response protein (MyD88), inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), interleukin 1 receptor associated kinase 4 (IRAK4), RELA proto-oncogene NF-κB subunit (RELA), and mitochondrial antiviral signaling protein (MAVS), which are involved in critical signaling pathways, as well as other, less-commonly identified proteins such as hepatocyte nuclear factor 4 alpha (HNF4A), ELAV-like RNA binding protein 1 (ELAVL1), fibronectin 1 (FN1), COP9 signalosome subunit 5 (COPS5), cullin 1 (CUL1), breast cancer type 1 susceptibility protein (BRCA1), and the FYN proto-oncogene Src family tyrosine kinase (FYN) as main hub proteins that might play important roles in influenza pathogenesis in chickens. In summary, we identified the signaling pathways and the proteomic determinants associated with disease pathogenesis in chickens infected with HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India.,Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Orathanadu, 614625, Tamil Nadu, India
| | - Ashwin Ashok Raut
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Santhalembi Chingtham
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Harshad V Murugkar
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Diwakar D Kulkarni
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Richa Sood
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Anamika Mishra
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India.
| |
Collapse
|
4
|
Langevin S, Pichon M, Smith E, Morrison J, Bent Z, Green R, Barker K, Solberg O, Gillet Y, Javouhey E, Lina B, Katze MG, Josset L. Early nasopharyngeal microbial signature associated with severe influenza in children: a retrospective pilot study. J Gen Virol 2017; 98:2425-2437. [PMID: 28884664 DOI: 10.1099/jgv.0.000920] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A few studies have highlighted the importance of the respiratory microbiome in modulating the frequency and outcome of viral respiratory infections. However, there are insufficient data on the use of microbial signatures as prognostic biomarkers to predict respiratory disease outcomes. In this study, we aimed to evaluate whether specific bacterial community compositions in the nasopharynx of children at the time of hospitalization are associated with different influenza clinical outcomes. We utilized retrospective nasopharyngeal (NP) samples (n=36) collected at the time of hospital arrival from children who were infected with influenza virus and had been symptomatic for less than 2 days. Based on their clinical course, children were classified into two groups: patients with mild influenza, and patients with severe respiratory or neurological complications. We implemented custom 16S rRNA gene sequencing, metagenomic sequencing and computational analysis workflows to classify the bacteria present in NP specimens at the species level. We found that increased bacterial diversity in the nasopharynx of children was strongly associated with influenza severity. In addition, patients with severe influenza had decreased relative abundance of Staphylococcus aureus and increased abundance of Prevotella (including P. melaninogenica), Streptobacillus, Porphyromonas, Granulicatella (including G. elegans), Veillonella (including V. dispar), Fusobacterium and Haemophilus in their nasopharynx. This pilot study provides proof-of-concept data for the use of microbial signatures as prognostic biomarkers of influenza outcomes. Further large prospective cohort studies are needed to refine and validate the performance of such microbial signatures in clinical settings.
Collapse
Affiliation(s)
- Stanley Langevin
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Systems Biology, Sandia National Laboratories, Livermore, California, USA
| | - Maxime Pichon
- Laboratoire de Virologie, IAI, CBN, Groupement Hospitalier Nord, Lyon, France.,University Lyon, Virpath, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France.,Centre National de Reference Virus Influenzae, IAI, CBN, Groupement Hospitalier Nord, Lyon, France
| | - Elise Smith
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Juliet Morrison
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Zachary Bent
- Department of Systems Biology, Sandia National Laboratories, Livermore, California, USA
| | - Richard Green
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Kristi Barker
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Owen Solberg
- Department of Systems Biology, Sandia National Laboratories, Livermore, California, USA
| | - Yves Gillet
- Department of Pediatric Emergency, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Etienne Javouhey
- Department of Pediatric Intensive Care, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Bruno Lina
- University Lyon, Virpath, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France.,Laboratoire de Virologie, IAI, CBN, Groupement Hospitalier Nord, Lyon, France.,Centre National de Reference Virus Influenzae, IAI, CBN, Groupement Hospitalier Nord, Lyon, France
| | - Michael G Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Laurence Josset
- Centre National de Reference Virus Influenzae, IAI, CBN, Groupement Hospitalier Nord, Lyon, France.,University Lyon, Virpath, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France.,Laboratoire de Virologie, IAI, CBN, Groupement Hospitalier Nord, Lyon, France
| |
Collapse
|
5
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
6
|
Burnum-Johnson KE, Kyle JE, Eisfeld AJ, Casey CP, Stratton KG, Gonzalez JF, Habyarimana F, Negretti NM, Sims AC, Chauhan S, Thackray LB, Halfmann PJ, Walters KB, Kim YM, Zink EM, Nicora CD, Weitz KK, Webb-Robertson BJM, Nakayasu ES, Ahmer B, Konkel ME, Motin V, Baric RS, Diamond MS, Kawaoka Y, Waters KM, Smith RD, Metz TO. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst 2017; 142:442-448. [PMID: 28091625 PMCID: PMC5283721 DOI: 10.1039/c6an02486f] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
Collapse
Affiliation(s)
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amie J Eisfeld
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron P Casey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Juan F Gonzalez
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Fabien Habyarimana
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sadhana Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larissa B Thackray
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin B Walters
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Bobbie-Jo M Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Brian Ahmer
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Vladimir Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
7
|
Wani SA, Sahu AR, Saxena S, Hussain S, Pandey A, Kanchan S, Sahoo AP, Mishra B, Tiwari AK, Mishra BP, Gandham RK, Singh RK. Systems biology approach: Panacea for unravelling host-virus interactions and dynamics of vaccine induced immune response. GENE REPORTS 2016; 5:23-29. [PMID: 32289096 PMCID: PMC7104209 DOI: 10.1016/j.genrep.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
Systems biology is an interdisciplinary research field in life sciences, which involves a comprehensive and quantitative analysis of the interactions between all of the components of biological systems over time. For the past 50 years the discipline of virology has overly focused on the pathogen itself. However, we now know that the host response is equally or more important in defining the eventual pathological outcome of infection. Systems biology has in recent years been increasingly recognised for its importance to infectious disease research. Host-virus interactions can be better understood by taking into account the dynamical molecular networks that constitute a biological system. To decipher the pathobiological mechanisms of any disease requires a deep knowledge of how multiple and concurrent signal-transduction pathways operate and are deregulated. Hence the intricacies of signalling pathways can be dissected only by system level approaches. Deciphering the host virus interactions through system biology approach reviewed High throughput techniques to understand the host pathogen interactions examined Shift from virus-centric perspective to spectrum of virus-host interactions Modeling of host-virus cross talk
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sonam Kanchan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Aditya Prasad Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
8
|
Park SJ, Kumar M, Kwon HI, Seong RK, Han K, Song JM, Kim CJ, Choi YK, Shin OS. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice. Sci Rep 2015; 5:16512. [PMID: 26576844 PMCID: PMC4649622 DOI: 10.1038/srep16512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022] Open
Abstract
Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Hyeok-il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan, 330-714 Republic of Korea
| | - Jae-min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, 136-742 Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764 Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.,Department of Microbiology, College of Medicine, Korea University, Seoul, 136-701 Republic of Korea
| |
Collapse
|
9
|
Raoof AA, Aerssens J. Patient-centered drug discovery as the means to improved R&D productivity. Drug Discov Today 2015; 20:1044-8. [DOI: 10.1016/j.drudis.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 01/06/2023]
|
10
|
Role of omega-3 PUFA-derived mediators, the protectins, in influenza virus infection. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:496-502. [PMID: 25617737 DOI: 10.1016/j.bbalip.2015.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/31/2022]
Abstract
Influenza A viruses are the causative agents of seasonal and pandemic infections. Influenza strains have recently emerged that show resistance to anti-viral drugs. Moreover, therapies in critically ill patients with severe influenza are limited, with the current anti-viral drugs showing disappointing results even in the absence of obvious viral resistance. Given the high mortality associated with avian H5N1 or H7N9 infections and the risk of pandemic potentials, effective drugs are needed for the treatment of severe influenza. A virus-host interaction is a multidimensional host response, in which not only genes and protein but also metabolites are up- or down-regulated, and cellular pathways and networks implicated in the viral pathogenesis are perturbed. Thus, it seems an attractive strategy to overcome influenza by targeting host metabolites and/or metabolic pathways involved in viral pathogenesis. Using lipidomics and lipid libraries screening, potectin D1 isomer (PDX) derived from the 15-lipoxygenase product 17S-H(p)DHA and/or 17HDHA precursor, has recently been identified, which suppresses influenza virus replication by inhibiting the nuclear export of viral mRNA rather than regulating resolution of inflammation. Contribution of the protectins to control influenza virus replication and their therapeutic potentials are reviewed here. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
|
11
|
Josset L, Tchitchek N, Gralinski LE, Ferris MT, Eisfeld AJ, Green RR, Thomas MJ, Tisoncik-Go J, Schroth GP, Kawaoka Y, Pardo-Manuel de Villena F, Baric RS, Heise MT, Peng X, Katze MG. Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol 2014; 11:875-90. [PMID: 24922324 PMCID: PMC4179962 DOI: 10.4161/rna.29442] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb).
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | - Nicolas Tchitchek
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | - Lisa E Gralinski
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
- Department of Epidemiology; University of North Carolina-Chapel Hill; Chapel Hill, NC USA
| | - Martin T Ferris
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
- Department of Genetics; University of North Carolina-Chapel Hill; Chapel Hill, NC USA
| | - Amie J Eisfeld
- Department of Pathobiological Sciences; Influenza Research Institute; University of Wisconsin-Madison; Madison, WI USA
| | - Richard R Green
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | - Matthew J Thomas
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | - Jennifer Tisoncik-Go
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences; Influenza Research Institute; University of Wisconsin-Madison; Madison, WI USA
| | | | - Ralph S Baric
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
- Department of Epidemiology; University of North Carolina-Chapel Hill; Chapel Hill, NC USA
| | - Mark T Heise
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
- Department of Genetics; University of North Carolina-Chapel Hill; Chapel Hill, NC USA
| | - Xinxia Peng
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| | - Michael G Katze
- Department of Microbiology; School of Medicine; University of Washington; Seattle, WA USA
- Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research; Portland, OR USA
| |
Collapse
|
12
|
Bos LDJ, de Jong MD, Sterk PJ, Schultz MJ. How integration of global omics-data could help preparing for pandemics - a scent of influenza. Front Genet 2014; 5:80. [PMID: 24795745 PMCID: PMC4000993 DOI: 10.3389/fgene.2014.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/25/2014] [Indexed: 01/14/2023] Open
Abstract
Pandemics caused by novel emerging or re-emerging infectious diseases could lead to high mortality and morbidity world-wide when left uncontrolled. In this perspective, we evaluate the possibility of integration of global omics-data in order to timely prepare for pandemics. Such an approach requires two major innovations. First, data that is obtained should be shared with the global community instantly. The strength of rapid integration of simple signals is exemplified by Google's(TM) Flu Trend, which could predict the incidence of influenza-like illness based on online search engine queries. Second, omics technologies need to be fast and high-throughput. We postulate that analysis of the exhaled breath would be a simple, rapid and non-invasive alternative. Breath contains hundreds of volatile organic compounds that are altered by infection and inflammation. The molecular fingerprint of breath (breathprint) can be obtained using an electronic nose, which relies on sensor technology. These breathprints can be stored in an online database (a "breathcloud") and coupled to clinical data. Comparison of the breathprint of a suspected subject to the breathcloud allows for a rapid decision on the presence or absence of a pathogen.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
13
|
Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 2014; 5:e01102-13. [PMID: 24496798 PMCID: PMC3950506 DOI: 10.1128/mbio.01102-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. IMPORTANCE Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Collapse
|
14
|
Tchitchek N, Eisfeld AJ, Tisoncik-Go J, Josset L, Gralinski LE, Bécavin C, Tilton SC, Webb-Robertson BJ, Ferris MT, Totura AL, Li C, Neumann G, Metz TO, Smith RD, Waters KM, Baric R, Kawaoka Y, Katze MG. Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice. BMC SYSTEMS BIOLOGY 2013; 7:69. [PMID: 23895213 PMCID: PMC3750405 DOI: 10.1186/1752-0509-7-69] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Influenza infection causes respiratory disease that can lead to death. The complex interplay between virus-encoded and host-specific pathogenicity regulators - and the relative contributions of each toward viral pathogenicity - is not well-understood. RESULTS By analyzing a collection of lung samples from mice infected by A/Vietnam/1203/2004 (H5N1; VN1203), we characterized a signature of transcripts and proteins associated with the kinetics of the host response. Using a new geometrical representation method and two criteria, we show that inoculation concentrations and four specific mutations in VN1203 mainly impact the magnitude and velocity of the host response kinetics, rather than specific sets of up- and down- regulated genes. We observed analogous kinetic effects using lung samples from mice infected with A/California/04/2009 (H1N1), and we show that these effects correlate with morbidity and viral titer. CONCLUSIONS We have demonstrated the importance of the kinetics of the host response to H5N1 pathogenesis and its relationship with clinical disease severity and virus replication. These kinetic properties imply that time-matched comparisons of 'omics profiles to viral infections give limited views to differentiate host-responses. Moreover, these results demonstrate that a fast activation of the host-response at the earliest time points post-infection is critical for protective mechanisms against fast replicating viruses.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Amie J Eisfeld
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Lisa E Gralinski
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christophe Bécavin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75015 Paris, France
| | - Susan C Tilton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Martin T Ferris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison L Totura
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengjun Li
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriele Neumann
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoshihiro Kawaoka
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|