1
|
Ma X, Gao M, Zhang X, Ma W, Xue F, Wang XF, Wang X. Identification and characterization of linear epitopes of monoclonal antibodies against the capsid proteins of small ruminant lentiviruses. Front Microbiol 2024; 15:1452063. [PMID: 39149208 PMCID: PMC11325181 DOI: 10.3389/fmicb.2024.1452063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV) are members of a group of genetically highly homologous lentiviruses collectively referred to as small ruminant lentiviruses (SRLVs). SRLVs can infect sheep, goats and other small ruminants, causing multisystemic disease with progressive and persistent inflammatory changes, severely reducing animal productivity and impeding animal trade. The capsid protein of SRLVs, p28, is highly conserved among strains and is a commonly used marker for the detection of SRLVs. In this study, two monoclonal antibodies (mAbs), designated G8F7 and A10C12, against p28 were generated using a recombinant p28 protein expressed in Escherichia coli as an immunogen. Functional analysis showed that these two monoclonal antibodies could be used in iELISA, immunofluorescence assays (IFA) and western blot assays to detect p28 or Gag precursor proteins of SRLVs. Two linear epitopes, 61GNRAQKELIQGKLNEEA77 (E61-77) and 187CQKQMDRVLGTRVQQATVEEKMQACR212 (E187-212), which are recognized by G8F7 and A10C12, respectively, were identified through truncation of the GST-fused p28. Amino acid sequence alignment showed that the epitope E61-77 is conserved among SRLVs, with a dominant mutation site (K72R) that does not disrupt recognition by G8F7. E187-212 was found to exhibit variability among SRLVs, but the majority of mutant epitopes are recognized by A10C12, with the exception of a mutant epitope from an isolate with undefined subtypes from Ovis aries, which was not recognized. These findings may facilitate future study of SRLVs and promote the development of methods for the detection of these viruses.
Collapse
Affiliation(s)
- Xiaohua Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Min Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
2
|
Davaasuren N, Molaee V, Erdene-Ochir TO, Nyamdavaa G, Ganzorig S, Mazzei M, Sakoda Y, Lühken G, Tumenjargal S. Phylogenetic analysis of small ruminant lentiviruses in Mongolian sheep supports an ancient east-west split for the genotype A. Vet Res Commun 2024; 48:1955-1962. [PMID: 38530579 DOI: 10.1007/s11259-024-10361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The ovine maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) are small ruminant lentiviruses (SRLVs) with striking genetic and structural similarities. The presence of SRLV in Mongolian sheep and goats was serologically demonstrated more than a decade ago; however, the viral genotype remains unknown. In total, 329 blood samples were collected from two sheep breeds (i.e., Khalkha and Sumber) in Tov, Govisumber, Arkhangay, Dornogovi, Zavkhan, and Sukhbaatar provinces, Mongolia. Serological and phylogenetic analyses were performed regardless of any apparent clinical signs, although most of the animals appeared healthy. All sheep in three of the six provinces were seronegative, whereas the seroprevalence in the Tov, Govisumber, and Zavkhan provinces averaged 7.9%. Genomic DNA from seropositive animals was tested using hemi-nested polymerase chain reaction, and sub-genomic SRLV sequences were determined from nine samples. Mongolian SRLV sequences clustered within the divergent subtype A22, which was previously found only in Fertile Crescent regions, including Lebanon, Jordan, and Iran, where the first sheep-domestication (Ovis aries) occurred. According to the phylogenetic analysis, genotype A has two ancestors from the ancient Fertile Crescent: (1) Turkish strains and (2) Iranian, Jordanian, and Lebanese strains. The first ancestor spread westward, whereas the second spread eastward, ultimately reaching Mongolia.
Collapse
Affiliation(s)
- Nergui Davaasuren
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Vahid Molaee
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Tseren-Ochir Erdene-Ochir
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Guugandaa Nyamdavaa
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Sumiya Ganzorig
- Department of Biology, National University of Mongolia, Ulaanbaatar, 14021, Mongolia
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159, Pisa, Italy
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Sharav Tumenjargal
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia.
| |
Collapse
|
3
|
Kalogianni AI, Bouzalas I, Marka S, Zografaki ME, Mavrikou S, Gelasakis AI. Genetic Characterization of Small Ruminant Lentiviruses Isolated from Dairy Sheep in Greece. Viruses 2024; 16:547. [PMID: 38675890 PMCID: PMC11053789 DOI: 10.3390/v16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The high genetic heterogeneity of small ruminant lentiviruses (SRLV) renders the genetic characterization of the circulating strains crucial for the epidemiological investigation and the designation of effective diagnostic tools. In Greece, research data regarding the genetic diversity of the circulating SRLV strains is scarce, hindering the implementation of efficient surveillance and control programs. The objective of the study was to genetically characterize SRLV strains isolated from intensive dairy sheep farms in Greece and evaluate the variability of the immunodominant regions of the capsid protein. For this reason, a total of 12 SRLV-infected animals from four intensive dairy sheep farms with purebred Chios and Lacaune ewes were used for the amplification and sequencing of an 800 bp gag-pol fragment. The phylogenetic analyses revealed a breed-related circulation of strains; Chios ewes were infected with strains belonging exclusively to a separate group of genotype A, whereas strains belonging to subtype B2 were isolated from Lacaune ewes. Immunodominant epitopes of capsid protein were quite conserved among the strains of the same genotype, except for the Major Homology Region which showed some unique mutations with potential effects on viral evolution. The present study contributes to the extension of the current knowledge regarding the genetic diversity of SRLV strains circulating in sheep in Greece. However, broader genetic characterization studies are warranted for the exploration of possible recombinant events and the more comprehensive classification of the circulating strains.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| | - Ilias Bouzalas
- Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, 57001 Thessaloniki, Greece;
| | - Sofia Marka
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| |
Collapse
|
4
|
Colitti B, Daif S, Choukri I, Scalas D, Jerre A, El Berbri I, Fassi Fihri O, Rosati S. Serological and Molecular Characterization of Small Ruminant Lentiviruses in Morocco. Animals (Basel) 2024; 14:550. [PMID: 38396519 PMCID: PMC10886309 DOI: 10.3390/ani14040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies that investigated the origins of SRLV strains offered new insights into their distribution among domestic ruminants. The aim of the study was to investigate SRLV circulation in Morocco. A total of 51 farms were selected in different geographical locations and tested by screening and genotyping ELISA. Whole blood was used for DNA extraction and nested gag PCR. The sample size allowed for an estimation of prevalence lower than 20% (CI 95%). Surprisingly, a large proportion of screening-positive samples were not correctly serotyped. Sanger and NGS amplicon sequencing approaches allowed us to obtain new sequences even from difficult-to-amplify samples. The serological data support the evidence of an intrinsic difficulty of SRLV to spread, likely due to management practices. The low rate of success by genotyping ELISA led us to suppose that divergent strains might have escaped from diagnostic tools, as partially confirmed by the evidence of an A subtype carrying a mismatch in serotyping epitope. The sequence analysis revealed the circulation of novel B and recombinant A/B subtypes. This study highlights the importance of monitoring viral sequences and their evolution to develop specific diagnostic tests, particularly in countries where control measures are in place.
Collapse
Affiliation(s)
- Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| | - Soukaina Daif
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Imane Choukri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Daniela Scalas
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| | - Anniken Jerre
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway;
| | - Ikhlass El Berbri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Ouafaa Fassi Fihri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| |
Collapse
|
5
|
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Vet Res 2023; 67:479-502. [PMID: 38130459 PMCID: PMC10730557 DOI: 10.2478/jvetres-2023-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maedi-visna virus and caprine arthritis encephalitis virus are two closely related lentiviruses which cause multisystemic, progressive and persistent infection in goats and sheep. Because these viruses frequently cross the species barrier, they are considered to be one genetic group called small-ruminant lentiviruses (SRLV). They have in vivo tropism mainly for monocytes and macrophages and organ tropism with unknown mechanisms. Typical clinical signs are pneumonia in sheep, arthritis in goats, and mastitis in both species. Infection with SRLV cannot currently be treated or prevented, and control programmes are the only approaches to avoiding its spread. These programmes rely mainly on annual serological testing and elimination of positive animals. However, the high genetic and antigenic variability of SRLV complicate their early and definitive diagnosis. The objective of this review is to summarise the current knowledge of SRLV genetic variation and its implications for tropism, the development of diagnostic tests and vaccines and the effectiveness of control and eradication programmes. Material and Methods Subject literature was selected from the PubMed and the Google Scholar databases. Results The high genetic diversity of SRLV affects the performance of diagnostic tools and therefore control programmes. For the early and definitive diagnosis of SRLV infection, a combination of serological and molecular tests is suggested. Testing by PCR can also be considered for sub-yearling animals. There are still significant gaps in our knowledge of the epidemiology, immunology and biology of SRLV and their impact on animal production and welfare. Conclusion This information may aid selection of the most effective SRLV spread reduction measures.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
6
|
Olech M, Hodor D, Toma C, Negoescu A, Taulescu M. First Molecular Characterization of Small Ruminant Lentiviruses Detected in Romania. Animals (Basel) 2023; 13:3718. [PMID: 38067069 PMCID: PMC10705781 DOI: 10.3390/ani13233718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 09/10/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of retroviruses that cause multisystem chronic diseases in goats and sheep and lead to production losses in these animals, negatively affecting animal health and welfare. Although molecular characterization of SRLV field isolates has been performed in many countries, there is currently no information on SRLV genotypes circulating in sheep and goats in Romania. Therefore, the main objective of this study was to conduct a molecular and phylogenetic analysis of SRLVs from Romania and determine the degree of genetic relatedness of the obtained sequences to other known SRLV reference strains. A total of 81 sheep lung tissue samples and 41 sheep lung lymph node samples were tested using nested real-time PCR, and samples positive for real-time PCR were used to amplify an 800 bp gag-pol fragment and an overlapping 625 bp fragment of the gag gene. Pairwise DNA distance and phylogenetic analysis showed that the Romanian SRLV strains were closely related to the A2 and A3 strains based on gag-pol sequences and to the A3 and A17 subtypes based on gag sequences. No recombination events were found. Our results revealed that the Romanian sequences have similar epitope patterns to other existing subtypes, although E/K and R/K mutations in epitope 3 were found only in the Romanian sequences, which may have potential value in serological diagnosis. This study is the first report on the genetic characterization of SRLV strains circulating in Romania and provides new information on SRLV heterogeneity. Further detailed studies should be conducted to better understand the divergence of SRLV Romanian strains.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Dragoş Hodor
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Andrada Negoescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| |
Collapse
|
7
|
Phylogenetic Analysis of Small Ruminant Lentiviruses Originating from Naturally Infected Sheep and Goats from Poland Based on the Long Terminal Repeat Sequences. J Vet Res 2022; 66:497-510. [PMID: 36846042 PMCID: PMC9945007 DOI: 10.2478/jvetres-2022-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Previous gag and env sequence studies placed Polish small ruminant lentiviruses (SRLVs) isolated from sheep and goats in subtypes B1, B2, A1, A5, A12, A13, A16-A18, A23, A24 and A27. This study extended the genetic/phylogenetic analysis of previously identified Polish SRLV strains by contributing long terminal repeat (LTR) sequences. Material and Methods A total of 112 samples were analysed. Phylogenetic analyses were carried out on the LTR fragment using the neighbour-joining, maximum likelihood, and unweighted pair group method with arithmetic mean methods. Results Polish caprine and ovine LTR sequences clustered within group A and grouped in at least 10 clusters (subtypes A1, A5, A12, A13, A16-A18, A23, A24 and A27). Most of the Polish strains (78%) belonged to the same subtype by the indication of the gag, env and LTR genomic regions. Discrepancies in affiliation depending on the particular sequence were observed in 24 (21%) strains, most of which came from mixed-species flocks where more than one SRLV genotype circulated. Sequences of the LTR reflected subtype-specific patterns. Several subtype-specific markers were identified, e.g. a unique substitution of T to A in the fifth position of the TATA box in A17, A27, A20 and B3. Conclusion This study provides valuable insights into the genetic diversity of SRLV field strains in Poland, their phylogenetic relationships and their position in the recently established SRLV classification. Our results confirmed the existence of the ten subtypes listed and the readier emergence of new SRLV variants in mixed-species flocks.
Collapse
|
8
|
Braz GF, Heinemann MB, Reis JKP, Teixeira BM, Cruz JCM, Rajão DS, Oliveira FG, Alves F, Castro RS, Leite RC, Valas S. Genetic and antigenic characterization of Brazilian SRLV strains: Natural small ruminant interspecies transmission from mixed herds. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105322. [PMID: 35753623 DOI: 10.1016/j.meegid.2022.105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cross-species transmission events and mixed infection of small ruminant lentiviruses (SRLVs) were studied in seven goats and two sheep from three small ruminant mixed flocks from Northeast and Southeast Brazil. Genetic and antigenic analyses with gag/env genes and ELISA multiepitope SU1/SU5 recombinant antigens were carried out, respectively. The genetic analysis of gag and env sequences showed high viral diversity in both species, MVV-like (subtype A1) and CAEV-like B1 in goats, and CAEV-like (subtype B1) in sheep, revealing SRLV interspecies transmission from sheep to goats and vice versa in Brazilian farms. Two Brazilian caprine lentiviruses were segregated in two new genetic clades based on gag analyses, which suggests a new classification into heterogenic genotype A. Furthermore, goat isolates were grouped into subtype A1 and B1 clusters. Cross-reactive antibodies were detected in goats using ELISA with a recombinant antigen carrying SU1 and SU5 immunodominant epitopes; the results showed anti-CAEV and MVV antibodies in goats and anti-CAEV antibodies in sheep. This result can be associated with the high divergence in the V4 region due to SRLV variability. All results confirm cross-species infection of SRLV in Brazilian mixed herds.
Collapse
Affiliation(s)
- G F Braz
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil.
| | - M B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, USP, Brazil.
| | - J K P Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Brazil.
| | - B M Teixeira
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil
| | - J C M Cruz
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil
| | - D S Rajão
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, United States.
| | | | - F Alves
- Departamento de Fisiologia e Biofísica - ICB, UFMG, Brazil.
| | - R S Castro
- Departamento de Medicina Veterinária, UFRPE, Brazil.
| | - R C Leite
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Brazil
| | - S Valas
- Agence Française de Sécurité Sanitaire des Aliments - ANSES, Niort Laboratory, France
| |
Collapse
|
9
|
Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 2022; 14:v14040686. [PMID: 35458416 PMCID: PMC9032261 DOI: 10.3390/v14040686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) represent a very heterogeneous group of ss-RNA viruses that infect sheep and goats worldwide. They cause important, deleterious effects on animal production and limit the animal trade. SRLVs show a high genetic variability due to high mutation rate and frequent recombination events. Indeed, five genotypes (A–E) and several subtypes have been detected. The aim of this work was to genetically characterize SRLVs circulating in central Italy. On this basis, a phylogenetic study on the gag-pol genetic region of 133 sheep, collected from 19 naturally infected flocks, was conducted. In addition, to evaluate the frequency of mutation and the selective pressure on this region, a WebLogo 3 analysis was performed, and the dN/dS ratio was computed. The results showed that 26 samples out of 133 were clustered in genotype A and 106 samples belonged to genotype B, as follows: A9 (n = 8), A11 (n = 10), A24 (n = 7), B1 (n = 2), B2 (n = 59), and B3 (n = 45). No recombination events were found. Mutations were localized mainly in the VR-2 region, and the dN/dS ratio of 0.028 indicated the existence of purifying selection. Since the genetic diversity of SRLVs could make serological identification difficult, it is important to perform molecular characterization to ensure a more reliable diagnosis, to maintain flock health status, and for the application of local and national control programs.
Collapse
|
10
|
Olech M, Kuźmak J. Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A. Viruses 2021; 13:2529. [PMID: 34960798 PMCID: PMC8708130 DOI: 10.3390/v13122529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.
Collapse
Affiliation(s)
- Monika Olech
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| |
Collapse
|
11
|
Bazzucchi M, Pierini I, Gobbi P, Pirani S, Torresi C, Iscaro C, Feliziani F, Giammarioli M. Genomic Epidemiology and Heterogeneity of SRLV in Italy from 1998 to 2019. Viruses 2021; 13:v13122338. [PMID: 34960606 PMCID: PMC8706641 DOI: 10.3390/v13122338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are viruses that retro-transcribe RNA to DNA and show high rates of genetic variability. SRLV affect animals with strains specific for each host species (sheep or goats), resulting in a series of clinical manifestations depending on the virulence of the strain, the host’s genetic background and farm production system. The aim of this work was to present an up-to-date overview of the genomic epidemiology and genetic diversity of SRLV in Italy over time (1998–2019). In this study, we investigated 219 SRLV samples collected from 17 different Italian regions in 178 geographically distinct herds by CEREL. Our genetic study was based on partial sequencing of the gag-pol gene (800 bp) and phylogenetic analysis. We identified new subtypes with high heterogeneity, new clusters and recombinant forms. The genetic diversity of Italian SRLV strains may have diagnostic and immunological implications that affect the performance of diagnostic tools. Therefore, it is extremely important to increase the control of genomic variants to improve the control measures.
Collapse
Affiliation(s)
- Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 27100 Pavia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Carmen Iscaro
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Correspondence:
| |
Collapse
|
12
|
Furtado Araújo J, Andrioli A, Pinheiro RR, Sider LH, de Sousa ALM, de Azevedo DAA, Peixoto RM, Lima AMC, Damasceno EM, Souza SCR, Teixeira MFDS. Vertical transmissibility of small ruminant lentivirus. PLoS One 2020; 15:e0239916. [PMID: 33206648 PMCID: PMC7673514 DOI: 10.1371/journal.pone.0239916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate by means of Nested Polymerase Chain Reaction (nPCR), co-cultivation and sequencing, with genetic comparison between strains (mother/newborn), the occurrence of vertical transmission of Small Ruminant Lentiviruses (SRLV) from naturally occurring nannies infected for their offspring. For the detection of SRLV seropositive progenitors, blood was collected from 42 nannies in the final third of gestation in tubes with and without anticoagulant. The diagnostic tests used were Western Blot (WB) and nPCR. During the period of birth, the same blood collection procedure was performed on 73 newborns at zero hours of birth, with the same diagnostic tests. Seventeen blood samples from seven-day-old kids, proven positive for SRLV by nPCR, chosen at random, were subjected to coculture in goat synovial membrane (GSM) cells for 105 days. The pro-viral DNA extracted from the cell supernatant from the coculture was subjected to nPCR. For DNA sequencing from the nPCR products, nine positive samples were chosen at random, four nannies with their respective offspring, also positive. Each sample was performed in triplicate, thus generating 27 nPCR products of which only 19 were suitable for analysis. Among the 42 pregnant goats, in 50% (21/42) pro-viral DNA was detected by nPCR, while in the WB, only 7.14% (3/42) presented antibodies against SRLV. Regarding neonates, of the 73 kids, 34 (46.57%) were positive for the virus, using the nPCR technique, while in the serological test (WB), three positive animals (4.10%) were observed. The coculture of the 17 samples with a positive result in the nPCR was confirmed in viral isolation by amplification of the SRLV pro-viral DNA. When aligned, the pro-viral DNA sequences (nannies and their respective offspring) presented homology in relation to the standard strain CAEV Co. It was concluded that the transmission of SRLV through intrauterine route was potentially the source of infection in the newborn goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renato Mesquita Peixoto
- Embrapa Goats and Sheep, Sobral, Ceará, Brazil
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), level C, Brasilia, Distrito Federal–DF, Brazil
| | | | | | | | | |
Collapse
|
13
|
Labrecque M, Marchand C, Archambault D. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses 2020; 12:v12080900. [PMID: 32824614 PMCID: PMC7471974 DOI: 10.3390/v12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins.
Collapse
Affiliation(s)
- Marlène Labrecque
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals (Basel) 2020; 10:E616. [PMID: 32260101 PMCID: PMC7222820 DOI: 10.3390/ani10040616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023] Open
Abstract
Maedi-visna (MV) in sheep is caused by maedi-visna virus (MVV), a small ruminant lentivirus (SRLV) that causes chronic infection and inflammatory lesions in infected animals. Pneumonia and mastitis are its predominant clinical manifestations, and the tissues infected by MVV are mainly the lungs, the mammary gland, the nervous system and the joints. MV has a worldwide distribution with distinct MVV transmission patterns depending on circulating strains and regionally applied control/eradication schemes. Nevertheless, the prevalence rate of MV universally increases. Currently, gaps in understanding the epizootiology of MV, the continuous mutation of existing and the emergence of new small ruminant lentiviruses (SRLVs) strains, lack of an effective detection protocol and the inefficiency of currently applied preventive measures render elimination of MV an unrealistic target. Therefore, modifications on the existing MV surveillance and control schemes on an evidentiary basis are necessary. Updated control schemes require the development of diagnostic protocols for the early and definitive diagnosis of MVV infections. The objectives of this review are to summarize the current knowledge in the epizootiology and control of MV in dairy sheep, to describe the research framework and to cover existing gaps in understanding future challenges regarding MV.
Collapse
Affiliation(s)
- Aphrodite I Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | - Ioannis Bossis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | | | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| |
Collapse
|
15
|
Michiels R, Adjadj NR, De Regge N. Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens 2020; 9:E183. [PMID: 32138297 PMCID: PMC7157725 DOI: 10.3390/pathogens9030183] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are a group of highly divergent viruses responsible for global and fatal infections in sheep and goats. Since the current phylogenetic classification of these viruses was proposed in 2004, it nowadays consists out of 5 genotypes and 28 subtypes. In support of our national SRLV control program, we performed the genetic characterization of SRLV strains circulating in the Belgian sheep and goat population. Fourteen sheep and 9 goat strains were sequenced in the gag-pol and pol regions using the method described by Shah. Most SRLV strains from sheep and goats belonged to prototype A1 and B1 subtypes, respectively. We, however, also found indications for cross-species transmission of SRLV strains between sheep and goats and vice versa, and identified a new subtype designated as B5. An in-depth analysis of the current SRLV phylogeny revealed that many subtypes have been defined over the years based on limited sequence information. To keep phylogeny as a useful tool, we advocate to apply more rigorous sequencing standards to ensure the correct classification of current and new emerging strains. The genetic characterization of Belgian SRLV strains will help in the development of appropriate diagnostic tools to assist the national control program.
Collapse
Affiliation(s)
- Rodolphe Michiels
- Unit of Enzootic, Vector-Borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (N.R.A.); (N.D.R.)
| | | | | |
Collapse
|
16
|
Molecular characterization of circulating strains of small ruminant lentiviruses in Brazil based on complete gag and pol genes. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Colitti B, Coradduzza E, Puggioni G, Capucchio MT, Reina R, Bertolotti L, Rosati S. A new approach for Small Ruminant Lentivirus full genome characterization revealed the circulation of divergent strains. PLoS One 2019; 14:e0212585. [PMID: 30789950 PMCID: PMC6383919 DOI: 10.1371/journal.pone.0212585] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Small Ruminant Lentiviruses (SRLV) include at least 4 viral highly divergent genotypes. Genotypes A and B are widely distributed and genotypes C and E have been recognized in restricted geographic areas. New phylogroups have been identified targeting conserved regions. However, this approach suffers from the potential risk to misamplify highly divergent strains. Pathogenic strains are easily adapted to fibroblastic cells, but non-pathogenic strains isolation may require a different approach. We developed a fast and effective method for SRLV full genome characterization after cell culture isolation. Spleen samples were collected during regular slaughter from sheep and goats in northwestern Italy. Spleen-derived macrophage cultures were monitored for reverse transcriptase activity and RNA was extracted from the supernatant of positive cultures. Using Illumina MiSeq platform 22 new full genome sequences were obtained. The success of this approach is based on the following features: spleen is one of the main target for SRLV persistence; red pulp is a reserve of resident macrophages, the main target for SRLV replication in vivo; RTA is a sensitive assay for any replicating retrovirus; de novo sequencing do not require genetic knowledge in advance.
Collapse
Affiliation(s)
- Barbara Colitti
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
| | | | | | | | - Ramsés Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Navarra, Spain
| | - Luigi Bertolotti
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
- * E-mail:
| | - Sergio Rosati
- University of Turin, Dept. Veterinary Science, Grugliasco, Torino, Italy
| |
Collapse
|
18
|
Olech M, Murawski M, Kuźmak J. Molecular analysis of small-ruminant lentiviruses in Polish flocks reveals the existence of a novel subtype in sheep. Arch Virol 2019; 164:1193-1198. [PMID: 30739201 PMCID: PMC6420616 DOI: 10.1007/s00705-019-04161-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 01/28/2023]
Abstract
Small-ruminant lentivirus (SRLV) infections are widespread in Poland, and circulation of subtypes A1, A12, A13, A16, A17, B1 and B2 has been documented. The aim of this study was to characterize the SRLV strains circulating in sheep and goats in mixed flocks in the Malopolska region, where the highest seroprevalence has been detected. Phylogenetic analysis revealed that most of the isolates from sheep belonged to subtype A13, suggesting that this subtype may be predominant in the Malopolska region. Furthermore, the existence of a new subtype, tentatively designated as A18, was described for the first time. This work extends the current knowledge on the distribution of SRLV subtypes in sheep and goats in Poland and provides further information on the genetic diversity of SRLV. The new data are important for both epidemiological studies and eradication programs and provide insight into the evolution of SRLV.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| | - Maciej Murawski
- Department of Animal Biotechnology, Agricultural University of Kraków, 1B Rędzina, 30-248, Cracow, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
19
|
Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, Teixeira MFS. Duplex nested-PCR for detection of small ruminant lentiviruses. Braz J Microbiol 2018; 49 Suppl 1:83-92. [PMID: 30249525 PMCID: PMC6328810 DOI: 10.1016/j.bjm.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) have high genetic variability which results in different viral strains around the world. This create a challenge to design sensible primers for molecular diagnosis in different regions. This work proposes a protocol of duplex nested-PCR for the precise diagnosis of SRLV. The technique was designed and tested with the control strains CAEV Co and MVV 1514. Then, field strains were submitted to the same protocol of duplex nested-PCR. Blood samples of sheep and goats were tested with AGID and nested PCR with specific primers for pol, gag and LTR. The AGID results showed low detection capacity of positive animals, while the nested PCR demonstrated a greater capacity of virus detection. Results demonstrated that LTR-PCR was more efficient in detecting positive sheep samples, whereas gag-PCR allowed a good detection of samples of positive goats and positive sheep. In addition, pol-PCR was more efficient with goat samples than for sheep. Duplex nested PCR performed with standard virus samples and field strains demonstrated that the technique is more efficient for the detection of multiple pro-viral DNA sequences. This study demonstrated a successful duplex nested PCR assay allowing a more accurate diagnosis of SRLV.
Collapse
Affiliation(s)
- Rebeca C Marinho
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil.
| | - Gabrielle R Martins
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | | | - Ana Lídia M Sousa
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Sabrina Tainah C Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Juliana A Nobre
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Maria F S Teixeira
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| |
Collapse
|
20
|
Gayo E, Cuteri V, Polledo L, Rossi G, García Marín JF, Preziuso S. Genetic Characterization and Phylogenetic Analysis of Small Ruminant Lentiviruses Detected in Spanish Assaf Sheep with Different Mammary Lesions. Viruses 2018; 10:v10060315. [PMID: 29890760 PMCID: PMC6024768 DOI: 10.3390/v10060315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Small Ruminant Lentiviruses (SRLVs) are widespread in many countries and cause economically relevant, slow, and persistent diseases in sheep and goats. Monitoring the genetic diversity of SRLVs is useful to improve the diagnostic tools used in the eradication programs. In this study, SRLVs detected in Spanish Assaf sheep with different grades of lymphoproliferative mastitis were sequenced. Genetic characterization showed that most samples belonged to type A and were closer to Spanish SRLV isolates previously classified as A2/A3. Four samples belonged to subtype B2 and showed higher homology with Italian B2 strains than with Spanish B2 isolates. Amino acid sequences of immuno-dominant epitopes in the gag region were very conserved while more alterations were found in the LTR sequences. No significant correlations were found between grades of mastitis and alterations in the sequences although samples with similar histological features were phylogenetically closer to each other. Broader genetic characterization surveys in samples with different grades of SRLV-lesions are required for evaluating potential correlations between SRLV sequences and the severity of diseases.
Collapse
Affiliation(s)
- Elena Gayo
- Pathological Anatomy Section, Animal Health Department, School of Veterinary Medicine, University of Leon, via Profesor Pedro Carmenes s/n Campus de Vegazana, 24071 León, Spain.
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Laura Polledo
- Micros Veterinaria, INDEGSAL, via Profesor Pedro Carmenes s/n Campus de Vegazana, 24071 León, Spain.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Juan F García Marín
- Pathological Anatomy Section, Animal Health Department, School of Veterinary Medicine, University of Leon, via Profesor Pedro Carmenes s/n Campus de Vegazana, 24071 León, Spain.
| | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| |
Collapse
|
21
|
Olech M, Valas S, Kuźmak J. Epidemiological survey in single-species flocks from Poland reveals expanded genetic and antigenic diversity of small ruminant lentiviruses. PLoS One 2018; 13:e0193892. [PMID: 29505612 PMCID: PMC5837103 DOI: 10.1371/journal.pone.0193892] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Small ruminant lentivirus (SRLV) infections are widespread in Poland and circulation of subtypes A1, A12, A13, B1 and B2 was detected. The present work aimed at extending previous study based on the analysis of a larger number of animals from single-species flocks. Animals were selected for genetic analysis based on serological reactivity towards a range of recombinant antigens derived from Gag and Env viral proteins. Phylogenetic analysis revealed the existence of subtypes B2 and A12 in both goats and sheep and subtypes A1 and B1 in goats only. In addition, two novel subtypes, A16 and A17, were found in goats. Co-infections with strains belonging to different subtypes within A and B groups were detected in 1 sheep and 4 goats originating from four flocks. Although the reactivity of serum samples towards the recombinant antigens confirmed immunological relatedness between Gag epitopes of different subtypes and the cross-reactive nature of Gag antibodies, eleven serum samples failed to react with antigens representing all subtypes detected up-to-date in Poland, highlighting the limitations of the serological diagnosis. These data showed the complex nature of SRLV subtypes circulating in sheep and goats in Poland and the need for improving SRLV-related diagnostic capacity.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
- * E-mail:
| | | | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
22
|
Abstract
Small ruminant lentiviruses (SRLVs), which comprise caprine arthritis-encephalitis virus (CAEV) and maedi-visna virus (MVV), are prevalent in goats and sheep worldwide, including in Japan. However, little is known about the molecular characteristics of goat lentiviruses in Japan. In this study, a molecular and phylogenetic analysis of the long gag region was performed. The phylogenic tree demonstrated that all samples belonged to SRLV subtype B1. Two clusters were identified, with one cluster distinct from previously reported strains of subtype B1. In addition, several alterations in the amino acid sequence were detected in immunodominant epitopes of the gag region. To gain a deeper understanding of the genetic diversity of SRLVs in Japan, it will be necessary to increase the sample size and conduct a broader survey. The present report is important for establishing baseline information on the prevalence of SRLV in Japan and providing data to develop a new, more sensitive diagnostic test for effective control of SRLV.
Collapse
|
23
|
Panei CJ, Gos ML, Valera AR, Galosi CM, Echeverria MG. First isolation and nucleotide comparison of the gag gene of the caprine arthritis encephalitis virus circulating in naturally infected goats from Argentina. Open Vet J 2017; 7:32-35. [PMID: 28331831 PMCID: PMC5356288 DOI: 10.4314/ovj.v7i1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/01/2017] [Indexed: 01/25/2023] Open
Abstract
Caprine arthritis encephalitis virus (CAEV) has been reported in different countries worldwide, based on serological and molecular detection. In Argentina, the prevalence of CAEV infections is increasing, with goats showing symptoms associated mostly with cachexia and arthritis. Although in Argentina the virus has been detected by serology, it has never been isolated or characterized. Thus, the objectives of this work were to isolate and analyze the nucleotide sequences of the gag gene of Argentine CAEV strains and compare them with those of other SRLVs previously reported. Nucleotide sequence comparison showed homology with CAEV-Co, the CAEV prototype. Phylogenetic analyses showed that the Argentine strains clustered with genotype B, subtype B1. Because the molecular characterization of the gag region is suitable for phylogenetic studies and may be applied to monitor the control of SRLV, molecularly characterizing the Argentine CAEV strains may help develop a proper plan of eradication of CAEV infections.
Collapse
Affiliation(s)
- Carlos Javier Panei
- Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Maria Laura Gos
- National Scientific and Technical Research Council (CONICET), Argentina; Immunoparasitology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina
| | - Alejandro Rafael Valera
- Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina
| | - Cecilia Monica Galosi
- Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina; Scientific Research Commission of Buenos Aires Province (CIC-PBA), Argentina
| | - Maria Gabriela Echeverria
- Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| |
Collapse
|
24
|
Balbin MM, Lertanantawong B, Suraruengchai W, Mingala CN. Colorimetric detection of caprine arthritis encephalitis virus (CAEV) through loop-mediated isothermal amplification (LAMP) with gold nanoprobes. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Sanjosé L, Pinczowski P, Crespo H, Pérez M, Glaria I, Gimeno M, de Andrés D, Amorena B, Luján L, Reina R. Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA. Vet J 2015; 204:88-93. [DOI: 10.1016/j.tvjl.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 11/25/2022]
|
26
|
Clawson ML, Redden R, Schuller G, Heaton MP, Workman A, Chitko-McKown CG, Smith TPL, Leymaster KA. Genetic subgroup of small ruminant lentiviruses that infects sheep homozygous for TMEM154 frameshift deletion mutation A4Δ53. Vet Res 2015; 46:22. [PMID: 25756342 PMCID: PMC4349320 DOI: 10.1186/s13567-015-0162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/07/2015] [Indexed: 11/17/2022] Open
Abstract
Small ruminant lentivirus (SRLV) infections of sheep are influenced by genetics on both the host and pathogen sides. Genetic variation in the ovine transmembrane 154 (TMEM154) gene associates with infection susceptibility, and distinct SRLV genetic subgroups infect sheep in association with their TMEM154 diplotypes. In this study, a novel SRLV subgroup was identified that naturally infected sheep with various TMEM154 diplotypes, including those homozygous for a rare frameshift mutation (A4 delta53), which is predicted to abolish TMEM154 protein function. Thus, these SRLVs may infect sheep that lack functional TMEM154, and may not be restricted by TMEM154 diplotypes in establishing infections.
Collapse
|
27
|
Molecular characterization of the gag gene of caprine arthritis encephalitis virus from goats in the Philippines. Arch Virol 2015; 160:969-78. [PMID: 25655265 DOI: 10.1007/s00705-015-2359-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Caprine arthritis encephalitis virus (CAEV) causes caprine arthritis encephalitis syndrome, which is an emerging disease of goats in the Philippines. DNA sequence analysis showed homology of 86-93 % between Philippine CAEV and available CAEV sequences in GenBank. CAEV was detected using nested polymerase chain reaction (PCR), and new sets of primers were designed in order to amplify the gag gene, which is a highly conserved region of the viral genome. In addition, the Philippine CAEV isolate clustered in group B with the prototype caprine lentivirus. Based on amino acid sequence alignments, it is possible that the Philippine CAEV isolate is a new strain of CAEV, but it is also possible that it was already present in the country even before the start of goat importation. Molecular characterization of the CAEV gag gene is important for the development of a detection kit specific for the local strain of CAEV and the establishment of small ruminant lentivirus eradication programs in the Philippines. This study is the first report to describe the molecular characteristics of CAEV circulating in the Philippines.
Collapse
|
28
|
Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 2014; 475:159-71. [PMID: 25462356 DOI: 10.1016/j.virol.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/26/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
Abstract
The molecular epidemiology of small ruminant lentiviruses (SRLVs) is constantly changing due to animal movements, cross species transmission and because of their rapid evolutionary rate. This study reports a comprehensive genetic and phylogenetic analysis based on consensus gag and pol sequences covering 3kb of the SRLV genome from small ruminants in Québec, Canada. A group of strains obtained from goats originating from different flocks, segregated in a unique clade distinct from currently known SRLV groups. Genetic dissection of the gag gene from these strains revealed that it originated as a result of a recombination event between parental strains currently circulating in small ruminants of the country. Following HIV nomenclature, we propose to call this group of strains, circulating recombinant form 1 SRLV, or CRF01_AB SRLV. In addition, the study confirms the existence of genetically distinct and homogeneous populations of SRLVs infecting sheep and goats housed in single species flocks.
Collapse
|
29
|
Stonos N, Wootton SK, Karrow N. Immunogenetics of small ruminant lentiviral infections. Viruses 2014; 6:3311-33. [PMID: 25153344 PMCID: PMC4147697 DOI: 10.3390/v6083311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022] Open
Abstract
The small ruminant lentiviruses (SRLV) include the caprine arthritis encephalitis virus (CAEV) and the Maedi-Visna virus (MVV). Both of these viruses limit production and can be a major source of economic loss to producers. Little is known about how the immune system recognizes and responds to SRLVs, but due to similarities with the human immunodeficiency virus (HIV), HIV research can shed light on the possible immune mechanisms that control or lead to disease progression. This review will focus on the host immune response to HIV-1 and SRLV, and will discuss the possibility of breeding for enhanced SRLV disease resistance.
Collapse
Affiliation(s)
- Nancy Stonos
- Centre for the Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Niel Karrow
- Centre for the Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|